
al-Farabi Kazakh National University

UDC 004.386 On manuscript right

ABYLKASSYMOVA AIZHAN BOLATOVNA

POTENTIAL OF HYBRID OPENMP/MPI PARALLELIZATION

STRATEGIES FOR HPC SOFTWARE

6D060200-Computer science

Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (PhD)

Supervisors:

Associate Professor, candidate of

physico-mathematical Sciences,

Mansurova Madina

al-Farabi Kazakh National

University

Dr.-Ing. Matthias Meinke

JARA – HPC - RWTH Aachen

University (Germany)

Republic of Kazakhstan, Almaty, 2022

2

Content

Designations and abbreviations…………………………………………… 5

Introduction………………………………………………………………… 6

1. High-Performance Computing Technology Descriptions………………. 10

1.1 High-Performance Computing with MPI Technology……………….... 14

1.1.1 The concept of a parallel program………………………………. 14

1.1.2 Operation Data…………………………………………...... 15

1.1.3 The concept of communicators……………………………. 15

1.1.4 Virtual topology……………………………………………. 15

1.2 High-Performance Computing with OpenMP Technology……………. 16

1.2.1 OpenMP ideology………………………………………. 17

1.3 Models of parallel programming…………………………………... 17

1.4 Development of parallel algorithms……………………………….. 18

1.4.1 Decomposition (segmentation, splitting)………………....... 18

1.4.2 Recursive dichotomy……………………………………… 18

1.4.3 Functional decomposition………………………………… 19

1.4.4 Design Communications………………………………….. 20

1.4.5 Enlargement………………………………………………. 20

1.5 High-Performance Computing with OpenMP/MPI

Technology…………………………………………………………….

20

1.6 High-Performance Computing Performance Assessment………… 21

2 Analytical models of the main parallel algorithm characteristics……..… 24

2.1 Topology of data transfer processes…………………………………… 24

2.2 Analytical models for estimating the of energy consumption, memory

and time of collective operations characteristics .………………………….

26

2.3 Optimization of collective operation algorithms………………............. 29

3 Basic equations of hydrodynamics for mathematical modeling of

physical processes …….……………………………………………………

36

3.1 Law of mass conservation. Continuity equation.……………………..... 36

3.2 The momentum theorem. Momentum equation.……………………….. 38

3.3 Navier-Stokes equations. Newton's hypothesis.……………………….. 41

3.4 Discretization of governing equations…………………………............. 42

3.5 Incompressible Navier-Stokes equations. Dynamic similarity

(dimensionless)……………………………………………………………...

43

3.6 Incompressible Navier-Stokes equations for curvilinear coordinates….. 45

3

4. Numerical Investigation of the Efficiency of High Performance

Computing for Backward Step Flow Problems…………………………….

48

4.1 Problem Statement……………………………………………………... 48

4.2 Mathematical Formulation of the Problem…………………………….. 50

4.3 Numerical algorithms ………………………………………….............. 52

4.4 Parallelization Algorithm………………………………………............. 53

4.5 Results of numerical calculation……………………………………….. 55

4.6 Conclusion……………………………………………………………… 58

5. Numerical Investigation of the Efficiency of High-Performance

Computing Using Hybrid Parallel Algorithms for Airflow Problems in a

Complex Nasal Region……………………………………………………..

60

5.1 Statement of the Physical Problem……………………………………... 61

5.2 Numerical algorithm…………………………………………………… 64

5.3 Parallel implementation………………………………………………… 64

5.4 Results of numerical calculation……………………………………….. 71

5.5 Statement of the 3D Physical Problem…………………………………. 75

5.6. Numerical study of heating and humidification of air in the human

nose………………………………………………………………………….

83

5.7 Hybrid parallel numerical algorithm using dynamic load

balancing……………………………………………………………………

101

5.8 Parallelization algorithm using dynamic load balancing………………. 102

5.9 Estimating Computational Weights……………………………............. 104

5.10 Split approach…………………………………………………………. 105

5.11 Parallel performance analysis………………………………………… 107

5.12 Conclusion …………………………………………………………… 111

Conclusion…………………………………………………………………. 112

References…………………………………………………………………. 114

4

Acknowledgements

The author expresses his gratitude to the supervisor Professor Mansurova Madina

(Al-Farabi Kazakh National University) for her support in the work, Professor

Matthias Meinke (RWTH Institute of Aerodynamics, Aachen, Germany) for the tasks

and attention paid to the work, as well as PhD A. Niemöller (RWTH Institute of

Aerodynamics, Aachen, Germany) and as PhD Issakhov Alibek (Al-Farabi Kazakh

National University) for fruitful discussions and valuable comments.

Aizhan Abylkassymova

5

Designations and abbreviations

In this dissertation the following terms with appropriate definitions are used:

∇ – the operator of nabla,

Δ – Laplacian vector operator,

t – time,

ν – coefficient of kinematic viscosity, m²/s

ρ – density,

p – pressure, kg/m3

u ⃗ = (u, v) – the components of the flow velocity,

f ⃗ – vector field of the mass forces.

δ(i, j) – is the Kronecker delta

Re - Reynolds number

P – number of processors

Ep – efficiency of parallel algorithm

Sp – speed-up of parallel algorithm

Tcomm – time of execution of communication operation

6

INTRODUCTION

Information technology is gaining popularity day by day, as today it is the era of

high-performance parallel computing systems. For this reason, the issue of

accelerating and processing and analyzing large amounts of data is acute. There are a

number of ways to deal with this issue, such as multi-core machines, supercomputers,

or grid systems. Also, parallel algorithms are used for processing, modeling and

visualization of both initial and transformed data. Depending on the technologies

used in the construction of parallel programs, the architecture of computing systems

also depends (MPI libraries for message passing [1, 2], high-level parallel

programming systems (Unified Parallel C, ParJava, DVM, T-system, Cray Chapel,

IBM X10) support for multithreading and development of programs for specialized

systems (NVIDIA CUDA, OpenCL, OpenACC, OpenMP)).

As it knows, the use of parallel technologies can be due to such reasons as

modeling real physical problems described by systems of differential equations in

partial derivatives. For example, flows of a viscous incompressible medium (one of

the important problems of mechanics).

Moreover, in real life and in many sciences (medicine, architecture, industry),

the problems of the interaction of air flow with various obstacles are very popular.

This relevance of the aerodynamic stability of structures appeared after some

unfortunate incidents [3-7].

Scientists, who have made a significant contribution to the theory and practice

of computer systems and parallel computing technologies, are: J.L. Traf, T. Sterling,

M. Snir, R. Rabenseifner, S. Matsuoka, T. Hoeler, W. Gropp, S. Cray, J. Dongarra, P.

Balaji, N.N. Yanenko, Yu.I. Shokin, B.N. Chetverushkin, V.G. Khoroshevsky, Ya.A.

Khetagurov, A.N. Tomilin, V.B. Smolov, G.G. Ryabov, G.E. Pukhov, D.V.

Puzankov, I.V. Prangishvili, D.A. Pospelov, Yu.I. Mitropolsky, V.A. Mellnicks, G.I.

Marchuk, I.I. Levin, V.K. Levin, S.A. Lebedev, A.O. Latsis, V.G. Lazarev, L.N.

Korolev, V.V. Korneev, Yu.G. Kosarev, I.A. Kalyayev, A.V. Kalyaev, M.B.

Ignatiev, V.P. Ivannikov, A.V. Zabrodin, E.V. Evreinov, V.F. Evdokimov, V.M.

Glushkov, V.V. Voevodin, V.V. VaSyliev, V.S. Burtsev, V.B. Betelin, E.P.

Balashov, S.M. Abramov and etc.

In [8], a parallel algorithm for modeling geological environments is presented. A

distinctive feature of this algorithm is the use of several parallel programming

technologies, such as MPI, OpenMP, CUDA. This work is aimed at studying the

simulation of acoustic wave propagation in an inhomogeneous medium for high-

performance systems, which is an important aspect in the field of seismic exploration.

Whereas in [9] a number of studies of the execution time of various types of

implementation of collective algorithms were carried out. Moreover, the dependence

of energy, memory and execution time of certain algorithms was revealed.

Dalle, in [10-12] papers talk about a natural study of the effectiveness of the

parallel seismic migration algorithm in reverse time for Blue Gene/P. That is, a

question is raised that arises when using the program on a different number of

processors.

7

As is known, the use of parallel technologies can be due to such reasons as

modeling real physical problems described by systems of differential equations in

partial derivatives. For instance, the flow of a viscous incompressible medium is one

of the important problems of mechanics. In fact, it is very difficult to achieve high

efficiency for large-scale parallelized tasks. Since even the slightest imbalance can

lead to undesirable results in overall performance. Dynamic load balancing (DLB), in

turn, improves the efficiency of complex modeling with non-trivial domain

decomposition. This possibility is provided by the Hilbert Space Filling Curve (SFC)

at a coarse level. Since it is necessary to take into account various numerical

methods, as well as various computational costs this schema automatically assigns

weights to estimate the overall workload distribution. Due to the inability of this

evaluation procedure to capture local workload changes, the overall SFC-based load

balancing approach may not be optimal. Therefore, the DLB incremental diffusion

algorithm is based on SFC separation, which allows to customize the domain

decomposition. Simulations for various physical processes in complex domains

demonstrate the effectiveness of DLB schemes for various large-scale related

problems. A detailed performance analysis showed the need to use the DLB method

to directly determine load imbalances, which, for example, are caused by individual

computational efficiency depending on the composition of the local workload,

scalability of individual program codes. In addition, the strong scaling experiment

showed performance improvement with increasing degree of parallelism when a

priori estimated computational weights are used for the initial split.

Objectives of the study. Improving the efficiency of complex modeling of

various physical and technical problems has been one of the hot topics for several

years now. But in this paper, the above goal is pursued, but with the use of a dynamic

load balancing (DLB) scheme. A method with minimal intervention is proposed,

regardless of the problem statement. Furthermore, computational weights are

estimated based on performance measurements during the simulation. The approach

automatically determines the appropriate weights that can be used to estimate the

overall distribution of the workload.

Study object. The object of the study is high-performance computing using the

method of dynamic load balancing for various physical tasks.

Research methods. The methods proposed in the thesis are a new tool in the

study of the problems of load distribution on various processors. The efficiency of

complex modeling with significant domain decompositions are the main point of

increase for DLB.

For numerical calculations, parallel numerical algorithms are used in the work,

comparison of calculated results and experimental data of other well-known authors

have been performed.

Theoretical and practical value. To solve important applied problems related

to numerical simulation on high-performance cluster machines, the conclusions and

results of this work can be used.

The developed schemes and numerical algorithms make a direct contribution to

the development of science in distributed computing and in the field of information

8

technology in the country. The practical value of the work lies in the fact that the

developed dynamic load balancing (DLB) scheme on high-performance systems of

great practical importance allows not only to obtain a significantly "fast" result

compared to sequential calculations, but also expands the possibilities of

implementing labor-intensive methods and algorithms. for solving important applied

and fundamental problems.

Scientific novelty. In order to improve the performance efficiency of massively

parallel computing in this paper a dynamic load balancing (DLB) scheme has been

derived. With the help of the Hilbert space filling curve (SFC) at a rough level it

become possible obtain this method with different numerical methods and different

computational costs per divided cell.

Using the constructed parallel numerical algorithm, the following were

performed:

- numerical study of the efficiency of high-performance computing for flow

problems behind a backward-facing step;

- numerical study of the efficiency of high-performance computing when using

hybrid parallel algorithms for problems of air flow in a complex nasal region;

- hybrid parallel numerical computation using various methods of domain

decomposition;

- hybrid parallel numerical computation using the dynamic load balancing

method;

- evaluation of the efficiency of hybrid parallel numerical computation using

different methods of domain decomposition;

- efficiency evaluation of the hybrid parallel numerical algorithm using the

dynamic load balancing method;

- the comparison of the obtained simulation results with numerical data and

experimental data of other authors was carried out;

- the analysis of the obtained results of hybrid parallel numerical computation

computation was carried out using the method of dynamic load balancing;

Provisions for Defense. The work contains the following results:

 results of a numerical study of the efficiency of high-performance computing

for flow problems behind a backward-facing step

 results of a numerical study of the efficiency of high-performance computing

when using hybrid parallel algorithms for problems of air flow in a complex nasal

region

 results of hybrid parallel numerical computation using different domain

decomposition method

 results of hybrid parallel numerical computation using dynamic load

balancing method

 results of evaluating the efficiency of hybrid parallel numerical computation

using various domain decomposition methods

 the results of efficiency evaluation of the hybrid parallel numerical algorithm

using the dynamic load balancing method;

9

 the obtained simulation results were compared with numerical data and

experimental data of other authors.

 the analysis of the obtained results of hybrid parallel numerical computation

using the method of dynamic load balancing.

Publication and approbation of results. The results of the dissertation were

published in 11 papers [116-126], of which 2 are from the list, the THOMSON

REUTERS database and 4 from the list, the SCOPUS database, 6 articles are from

the list recommended by the Committee for Control in Education and Science of the

Ministry of Education and Science of the Republic of Kazakhstan, 1 works - in the

materials of international and republican conferences.

The structure and scope of the thesis. The dissertation consists of a

designation and abbreviation, an introduction, five chapters, a conclusion and a

references. It is presented on 122 pages, references contain 126 items.

The main content of the work.
The first chapter provides descriptions of various technologies for high

performance computing.

The second chapter has a detailed description of the analytical models of the

main characteristics of the parallel algorithm.

The third chapter provides a detailed description of the mathematical

formulation of the basic equations for modeling the problem.

In the fourth chapter, numerical studies of the efficiency of high-performance

computing for backward-facing flow problems are considered.

In the fifth chapter, numerical studies of the efficiency of high-performance

computing using hybrid parallel algorithms for airflow problems in a complex nasal

region are considered.

In conclusion, the results of the dissertation work are presented.

10

1. HIGH PERFORMANCE COMPUTING TECHNOLOGY

DESCRIPTIONS

Nowadays the need to solve complex applied problems with a large amount of

computation and the fundamental limitation of the maximum speed of the "classical"

ones - according to the von Neumann scheme - computers led to the appearance of

multiprocessor computing systems (MVS) or supercomputers.

Vector expansion of multi-core processors and their mass production gave

impetus to parallel computing. Today, multi-core processors can be found in

everything from supercomputers to handheld gadgets. A sequential program written

without distributing work between different cores of the central processor and

without vectorization cannot reveal the full potential of the computing capabilities of

the central processor (Figures 1 and 2). Therefore, mainly for improving the

efficiency of the algorithm, in other words means applying parallel computing

applications. Obviously there are certain parameters that affect to the choice of

parallel algorithms and technical solutions. The main of them is the dimension of the

spatial grid. Thus, due to the fact of using rather coarse spatial grid, multiprocessor

systems with shared memory are preferable rather than using systems with distributed

memory. While for implementation using multiple threads, it is expedient to prefer

the implementation of using multiple processes. Moreover, the cost of

synchronization of workflows and the problem of its minimization play a significant

role on efficiency.

Figure 1 - The disturbed memory multiprocessor architecture.

11

Figure 2 - The shared memory multiprocessor architecture.

It is widely known that not all programs could totally be parallelized. So that

any program consists of two domains: parallel and sequential. The difference is in the

performance of the processes while generation. Based on the definitions of the

sequential field follows that birth, execution and completion of the program happens

in the same thread. Whereas generated by the parallelization threads can be executed

as well as on different processors, and on a single processor computer system.

Nevertheless, the access to the processors are not parallel, sometimes it is a

competition between flows. Managing competition is held by the scheduler of the

operating system using special algorithms.

One of the most common methods of classification is Flynn’s computer

taxonomy [10], in which the main point in the analysis of computer architecture is

emphasis on the methods of interaction sequences (flows) of executing commands

and data to be processed. With this approach the following main types of systems can

be distinguished:

 SISD (Single Instruction, Single Data) - a system in which there is a one

instruction stream and one data stream. Conventional sequential computers may be

included in this type;

 SIMD (Single Instruction, Multiple Data) - single system command

stream and multiple data streams. Such kind of class consists of multiprocessor

systems that at each given time can be running the same command for processing

multiple data elements; such architecture can be found in for example, multi-

processor systems with a single control device. This approach was widely used in

12

previous years, recently it has been seldom used, only, for creation of specialized

systems;

 MISD (Multiple Instruction, Single Data) - a system in which can be

found both many instruction stream and one data stream. Still there is no consensus

regarding this type of system: some experts believe that specific examples of

computers that match the type of computer systems, do not exist and the introduction

of this class is taken to complete the classification, while others refer to this type as,

systems such as systolic computing or systems with conveyor data processing;

 MIMD (Multiple Instruction, Multiple Data) – a system with multiple

command stream and multiple data streams. Most parallel multiprocessor systems are

concerned with a similar class.

Among others, the next number of common problems encountered when using

parallel computing can be considered:

 Loss of productivity for the organization of overlapping - according

to the hypothesis of Minsky [9], acceleration which is achieved using a parallel

system is proportional to the binary logarithm of the number of processors (for

instance, at 1000 processors possible acceleration is equal to 10).

At this point the acceleration of parallelism of certain algorithm should be clarified.

As there is a similar estimate held, regardless to the number of processors involved

and percentage of parallelizing.

 The existence of sequential computing - in accordance with Amdahl's

Law [9, 10] accelerating the computation using p processors is limited to the value

pff
S

/)1(

1




where f is the fraction of sequential calculations in the applicable data

processing algorithms (for example, in the presence of only 10% of sequential

instructions to perform calculations on the effect of parallelism cannot exceed 10

times the speed of data processing).

Summing up the above it could be declared that there could not be 100% parallel

program. Therefor the share of consistent action is mainly depends on the certain

percentage of sequential instructions. As a result, correctly chosen parallelization

algorithm can significantly reduce the sequential parts.

 The efficiency of parallelism has diversity of architectural design

principles. The percentage of efficiently directly depend on the percentage of fully

utilizing all the features of the equipment. Disadvantage of which is the difficulty of

transfer parallel algorithms and programs between the different types of systems.

In response to this observation, "homogeneity" also exists in serial computers,

which means that in this case, the properties of the equipment should be taken into

account for more efficient use. Moreover, today there are different types of system

architectures. But along with them, other methods of parallelization are also popular

(pipeline computing, multiprocessor systems, etc.). In addition, a variety of parallel

13

programs can be achieved using standard software for parallelization (built-in

libraries, OpenMp and others)

The current software is geared primarily towards serial computers - hence the

lion's share of software is written in a serial algorithm, thereby making the processing

of such a number of programs for parallel systems impossible.

OpenMP is an application programming interface on shared memory devices.

Therefore, parallelism is possible only where there is access to common data for all

parallel processes. By dividing loops into different threads, parallelization can be

achieved.

MPI is a method opposite to OpenMP in its logic, which is reflected in the name

itself. That is, it is a method of programming on devices with distributed memory.

Simply put, each parallel thread has its own space.

These kind of techniques are widely used in algorithmic languages like Fortran

and C / C + +, as a result of description of standard and its implementation.

To organize parallel computing in distributed memory conditions (where

processes operate independently of each other), there is a need to distribute the

computing load and organize information interaction (data transfer) between

processors. As a solution to all these options, a data interface (MPI) can be proposed.

1. Generally, these steps could be outlined for the distribution of computation

among the processors:

1) analysis of an algorithm for solving the problem

2) providing independent information fragments of computation

3) implementation

4) received parts distribution of the program on different processors. One of

the simple ways of covering all these steps in MPI – development of only

program code running at the same time on all available processors! Obviously,

this method leads to identity calculations on different processors. In order to

avoid this substitute different data for the program on different processors and

take into account the difference in calculation by means of identifying the

process that executing the program.

2. Appropriate operations for the organization of information exchange between

processors like sending/receiving and transmitting data are the most minimal

variant. Not least importance should be paid to the sufficient space for

communication between processors. There are many data transfer operations in

the MPI which are applied by means of communication operations. This

opportunity is the most powerful part of MPI (what is particularly shown by

the name - MPI).

As a result attempts to create software for data transfer between processors

began almost immediately with the advent of local computer networks - a series of

such tools is presented, for example, Quinn (2004), Alexey L.Lastoevsky (2009) and

many others. However, incompletely and incompatibility of these works were the

main disadvantages. Moreover the problem of transferring software to other computer

systems becomes acute. Thus lead to the active attempts by scientists to standardize

the organization of messages in a multiprocessor system. The bull point in emergence

14

of MPI was a workshop on standards for transmission of messages among the

distributed memory (the Workshop (later transformed into the international

community to MPI Forum group) on Standards for Message Passing in a Distributed

Memory Environment, Williamsburg, Virginia, USA, April 1992). As a result the

1994 standard MPI version 1.0 was created and even adopted. Later in 1997 MPI

standard version 2.0 appeared. MPI becoming the most widely used API for

delivering a required datum to another part of a program at some future time by using

the future concept. Another reason of MPI popularity is its easy usage in high level

languages as Fortran, Java and C++.

So let us give more deep definition for MPI. By past organization of transferring

messages, it is also enabling transmission of messages and thus meets all

requirements of the standard of MPI. Moreover, these tools should be organized in

the libraries and be accessible. But the difference between MPI as a standard and

saying MPI as a usage of it as a library in the program should be clearly separated. As

these two different interpretations of them.

There are issues related to the development of parallel programs using MPI [10,

11]. Let us outline positive concepts of MPI:

 In addition to cross platform programs with MPI libraries, they greatly

alleviate the problem of portability of parallel programs between different computer

systems

 Nowadays there are different MPI libraries adopted every type of computer

system in order to get the maximum possible extension taking into account computer

equipment possibilities of using a computer;

 It could be said that MPI reduces the complexity of developing parallel

programs. As standard of MPI provide the most basic operations of data transmission

while MPI libraries have a large number of parallel methods.

1.1 High-Performance Computing with MPI Technology

Let us consider the concepts and definitions that are fundamental to the standard

MPI.

1.1.1. The concept of a parallel program

Many parallel processes can be considered as a parallel program under MPI

tools. Processes can run on different processors, but on a single processor some

processes can also be located at the same time (in this case their response will be

implemented with time sharing). In the extreme case, only one processor can be used

to execute a parallel program - as a rule, this method is used for the initial verification

of parallel programs.

Usually the same software package serves as the basis for a parallel program,

that is, its copy - the code being executed must be available on all processors during

the execution of the parallel program. C or FORTRAN are frequently used languages

for source code, using one or another implementation of the MPI library.

15

At the stage of execution the number of the processors is determined and it

cannot be modified during the run time of a program. Thus the number of the

processor/process is called rank ranked from 0 till np-1, while the total number of

them is usually called size.

1.1.2 Operation Data

The core of the MPI infrastructure is messaging operations. For synchronous

operation of several processors during collective communication, there are various

paired operations in MPI.

Different transmission modes like synchronous, blocking can be used to perform

binary operations.

As mentioned earlier, the MPI standard is designed to implement the most basic

collective operations for data transfer [10-13].

1.1.3 The concept of communicators

Combining the processes of a parallel program create groups. The

communicator in MPI is used for data transfer operations, while it combines process

groups and a number of additional parameters (context) to use. It is also a generating

service object.

As a rule, for processes belonging to the same communicator paired data

transfer operations are performed. Whereas collective operations apply

simultaneously to all communicator processes. As a result, reference to the

appropriate communicator is a mandatory instruction for data transfer operations in

MPI.

When executing a program process, existing groups of processes and

communicators can be destroyed or created as new. Different groups or

communicators may perform the same process. All existing parallel software

processes are part of the MPI_COMM_WORLD communicator, which is actually the

default device.

Moreover to transfer data between processes of different groups, a global

communicator (intercommunicator) is required.

1.1.4 Virtual topology

As mentioned earlier, between any processes of the same communicator paired

data transfer operations can be performed. And all processes of the communicator

have to be included in a collective operation. In this regard, the structure of a

complete graph (regardless of the actual physical connections between processors)

could be named as the logical topology of connections between processes.

Thus taking into account above, it is advisable to consider the logical

representation of the existing communication network in the form of various

topologies for the presentation and further analysis of a number of parallel

algorithms.

16

In MPI many processes could be presented in the form of a lattice of arbitrary

dimension. In this case, arrays of boundary processes can be declared neighbors and,

thus, torus structures can be determined based on the lattice [10, 11].

Moreover, MPI gives a possibility to form a logical (virtual) topology of any

desired type.

Sequential programming models have the following characteristics:

 relatively low productivity;

 use of standard programming languages;

 good portability of programs at the source code level.

In their terms parallel programming model is characterized by:

 the ability to achieve higher performance programs;

 use of special programming techniques;

 use of special programming tools;

 more time-consuming programming;

 problems with mobility.

1.2 High-Performance Computing with OpenMP Technology

OpenMP (Open Multi-Processing) is an open standard for parallelizing

programs in the C, C ++ and Fortran languages. It describes the set of compiler

directives, library routines, and environment variables that are intended for

programming multithreaded applications on shared memory multiprocessor systems.

The development of the standard specifications is carried out by the non-profit

organization OpenMP Architecture Review Board (ARB) [1], which includes all

major processor manufacturers, as well as a number of supercomputer laboratories

and universities. The first version of the specification was released in 1997, it was

intended only for Fortran, the next year a version for C and C ++ was released.

OpenMP implements parallel computing using multithreading, in which the master

thread creates a set of slave threads, and the task is distributed among them. Threads

are assumed to run in parallel on a machine with multiple processors.

Tasks executed by threads in parallel, as well as the data required to perform

these tasks, are described using special preprocessor directives of the corresponding

language - "pragmas". Thus, Fortran code, which must be executed by several

threads, each of which has its own copy of the variable N, is preceded by the

following directive:! $OMP PARALLEL PRIVATE (N). The number of threads

created can be controlled both by the program itself by calling library procedures, and

from the outside, using environment variables.

Key elements of the standard:

 constructs for creating threads (parallel directive),

 constructs for distributing work between threads (DO / for and section

directives),

17

 constructs for managing work with data (shared and private expressions for

defining a variable memory class),

 constructs for synchronizing threads (directives critical, atomic and

barrier),

 runtime support library routines (e.g. omp_get_thread_num)

 environment variables (for example, OMP_NUM_THREADS).

1.2.1 OpenMP ideology

There are many types of parallel computing systems - multicore / multiprocessor

computers, clusters, systems on video cards, programmable integrated circuits, etc.

The OpenMP library is only suitable for programming shared memory systems using

thread parallelism. Threads are created within a single process and have their own

memory. In addition, all threads have access to the process memory. It can be

schematically represented in this form.

1.3 Models of parallel programming

There are various techniques, having a special purpose at different architecture

of high-performance computing systems and various tools in the range of parallel

programming model. Several of them are listed below.

Message-passing model

Key features of this approach:

 The program outlines several problems.

 Each task has a unique identifier.

 Sending and receiving messages the main tools of interaction.

 Multiple tasks can be performed on one processor.

 New tasks can be generated during the execution of a parallel program.

Concurrency model data

Key features of this approach:

18

 The program contains a sequence of one operation to the set of data

structure elements operations.

 "Grits" computing is low.

 The allocation of the data is made manually.

1.4 Development of parallel algorithms

Development phases of parallel algorithm:

1. Decomposition.

Ignoring architectural features of a particular computer system problem is

considered from the point of parallelization. In other words, the program is

divided into several sub-programs.

2. Designing exchange (data communication) between tasks.

By defining communication methods for data transfer of source data and

intermediate results of sub-programs manage the problem.

3. Enlargement.

Combination to larger units of sub-programs could be considered in order to

increase efficiency and decrease the complexity of development.

4. Scheduling algorithms.

Subtask distribution among the processors. Reducing exchange time

effectively use of processors – key point for choosing the method of destitution

of sub problems.

1.4.1 Decomposition (segmentation, splitting)

There are various methods of decomposition. Implementation of data

decomposition could be divided into following steps: data segmentation and the

algorithm processing. The divided data is separated into fragments of approximately

the same size. Transaction processing is coupled with a certain part of the data from

which subtasks will be generated. Then the steps for determining the necessary

transmission data should be defined. Duplicate calculations should be outlined in the

intersection parts of the program. In order to reduce the number of exchanges number

of stacks’ overlapping can be increased.

Data structure with the largest size, or those that are accessed more often than

others are analyzed first. Various stages of the calculation require data structures. So

it can be used for both static and dynamic decomposition schemes of these structures.

1.4.2 Recursive dichotomy

The possibility of dividing into sub regions keeping complexity but decreasing

the communication – this is called recursive dichotomy. First of all single dimension

is considered and divided into two parts. Then recursively executes the process of

portioning for each sub domain with a given a number of subtasks.

For example, for irregular grids recursive coordinate dichotomy likely to be

applied. As described above the process first is performed at each step along that

dimension. In addition, the method of recursive count dichotomy can be also applied

19

for this type of grids. In this instance the number of edges crossing the boundaries of

subdomains is minimized by means of lattice topology.

1.4.3 Functional decomposition

In the cases when there is no obvious parallelization of the algorithm, functional

decomposition method can be useful. By segmenting first the numerical algorithm,

later the data decomposition scheme is configured according to the adopted scheme.

The efficiency is ensured by the following points:

 After decomposition the number of processors at least for one is less than the

number of subtasks’ order;

 Needless computations and data manipulation should be avoided;

 Approximately of the same size for the sub tasks;

 Increase in a number of subtasks leading to the increase in problem (while

maintaining a constant size of a subtask) is a good point as a characterized

segmentation.

The size of sub problems defines granularity of the algorithm. While a number

of operations in the block is a measure of the granularity. Three degrees of

granularity could be outlined:

1. Fine-grained parallelism - instruction-level (less than 20 teams per block, the

number of concurrent sub-tasks - from a few to several thousand, the average

scale parallelism of about 5 commands per block)

2. Medium-grained parallelism - at the level of procedures. The block size is

2000 operations. Identification of such parallelism is more difficult to

implement, as inter procedural dependence should be considered

also. Requirements for communications are less than in the case of instruction-

level parallelism.

3. Coarse-grained parallelism – level of programs (tasks). It corresponds to the

execution of independent programs on a parallel computer. Coarse-grained

parallelism requires the support of the operating system.

By the way the most important condition of decomposition - independence of

subtasks. There are main types of independence:

 Independence of data - data that are processed by one part of the program is

not modified in another part of it.

 Independent management - the order of execution of the program may be

determined only at a run time (the sequence of execution is determined depending on

availability management).

 The independence of the resource – provided by the sufficient computing

resources.

 Independence of the conclusion - occurs if two subtasks do not produce an

entry in the same variable, and the independence of I / O, if the operators input-

output of two or more subtasks do not apply to a single file (or variable). For

example, we can use it for solving whole Navier – Stokes equations system.

 Complete independence is usually unreachable to achieve.

20

1.4.4 Design Communications

Nowadays following basic types of communications could be outlined:

 local - each sub problem is associated with a small set of other sub-tasks;

 global - each sub problem is associated with a large number of other sub

problems;

 structured - each sub-task and subtasks associated with it, form a regular

structure (for instance, the topology of the lattice);

 unstructured - subtasks associated arbitrary graph;

 static - communication scheme does not change over time;

 dynamic - the scheme of communication varies during program execution;

 synchronous - the sender and recipient of the data coordinate an exchange;

 asynchronous - sharing data is not coordinated.

 Moreover the following recommendations for communication design could

be given:

 In order to avoid poor scalability subtasks should have approximately the

same number of communications;

 Constantly use local communication as much as possible;

 And try to parallelize communication as much as possible.

1.4.5 Enlargement

Taking into account the results of the previous two steps, at the stage of

agglomeration combination of them occurs so that their number corresponds to the

number of processors.The agglomeration demands the following requirements:

 overheads of communication must be reduced;

 if the consolidation requires duplication of the calculations or data, this

should not lead to loss of performance and scalability of the program;

 the resulting problems should have roughly the same complexity;

 scalability must be maintained;

 the possibility of parallel execution must be maintained;

 labor cost of development must be reduced.

1.5 High-Performance Computing with OpenMP/MPI Technology

Almost linear scaling in the number of MPI processes and in time can be noted

regarding the efficiency of algorithms with natural data distribution (explicit schemes

for parabolic equations, separation of variables for elliptic equations, domain

decomposition methods, etc.). To improve efficiency on one computing node with

OpenMP, it is necessary to introduce local arrays for each of the sweats, as shown,

for example, in [1, 2]. The above described can be achieved by applying an algorithm

of technology similar to MPI, but do not forget about the need for shared memory on

the node.

The concept of data distribution between computing nodes, similar to MPI, is

used in this hybrid implementation of MPI/OpenMP. Which means there is one MPI

21

process per node. At each of the computing nodes, an important point is the exchange

of data and the organization of the overlay of calculations. Three timed data

exchanges occur at each step of the circuit. Moreover, each previous exchange

consists of more runs to find the necessary stream components. The main idea is to

send small arrays partly during the passages, and not in one large array after all

passes in a certain direction. Moreover, while one part is busy sending already

processed data, the other part is busy processing. That is, the solver threads are busy

performing runs of the relevant data.

Hybrid scheme concept: with postmen for the case of two MPI processes with

n+1 OpenMP threads (postman + n solvers) on each of the processes. Data

corresponding to MPI processes numbered 0 and 1 are separated by a horizontal

plane. In this example, on each of the processes, the data is divided into eight blocks,

each block corresponds to the execution of part of the runs. According to the

proposed idea, one postman and n solvers work simultaneously on each of the

processes, which together perform sweeps for each of the blocks. Numbers 0 denote

blocks processed by solvers at process 0, and 1 - blocks processed by solvers at

process 1. After several blocks are processed in parallel at each of the two processes,

the postmen (one at each of the processes) simultaneously send the already processed

blocks, and the solvers process the next blocks, etc. All available blocks that have

been processed by all MPI processes by the current moment are involved in the data

exchange each time. The order of processing blocks is chosen in such a way that at

the moment when the last blocks are exchanged, the solvers could already perform

the next step of the algorithm, in this example, these are sweeps along the other

direction. To do this, either during calculations, or during data exchanges, or at the

stage of assembling the right-hand side, it is necessary to change the local numbering

within each block of attacks so that the corresponding data has already been “sliced”

along the required direction.

1.6 High-Performance Computing Performance Assessment

This relation can express the speedup of the parallel algorithm:

Tp

T
Sp

1
 ,

where 1T – is the execution time of the program on one processor, Tp – the

execution time of the program on p processors.

Due to the acceleration it is possible to compare the behavior of algorithm with

one and p processors. The effectiveness of the parallel algorithm is closely related to

the acceleration. The efficiency of a parallel algorithm:

p

Sp
E p 

22

Since acceleration pSp  , the efficiency of the algorithm 1pE . A comparison of

the acceleration values obtained numerically with theoretical calculations based on

the Amdal and Gustafson-Barsis acons was also carried out. The application of

Amdahl's law makes it possible to determine the maximum theoretical acceleration of

a parallel solution relative to a serial code (Figure 3). It follows from this law that the

acceleration of program execution by parallelizing the program on a certain number

of processors is limited by the time required to perform its sequential operations.

n

Sp








1

1

where  – the proportion of work that can be parallelized; n - number of

computational processors.

Whereas Gustafson's law gives an estimate of the theoretical acceleration of the

calculation of the problem with an increase in the volume of the problem, which leads

to a decrease in the share of the subsequent part of the problem (Figure 4). For

Gustafson's law, the acceleration is called the scaling acceleration.

*)1(nnSp  ,

where  – the proportion of work that can be parallelized; n – number of

computational processors.

Figure 3 – Use of law of Amdahl.

23

Figure 4 – Gustafson-Barsis' Law; by increasing the problem size with P, the serial

portion increases slowly and speedup increases as processes are added.

When making a conclusion about the laws of Amdahl and Gustafson-Barsis, it is

necessary to note that they are both correct. Amdahl's law should be applied if you

need to run a program faster while maintaining the same load. Whereas at the same

time, but with a greater load, one can notice the influence of the Gustafson-Barsis

law.

24

2 ANALYTICAL MODELS OF THE MAIN PARALLEL ALGORITHM

CHARACTERISTICS

2.1 Topology of data transfer processes

As you know, a point-to-point operation is a function for the interaction of no

more than two program processes.

In this work MPI MPI_Sendrecv (communication function) was used to send

and receive messages from one processor to another.

C/C++:

int MPI_Sendrecv (void * sendbuf, int sendcount, MPI_Datatype sendtype, int

dest, int sendtag, void * recvbuf, int recvcount, MPI_Datatype recvtype, int source,

MPI_Datatype recvtag, MPI_Comm comm, MPI_Status * status),

Input Parameters

sendbuf

 Initial address of send buffer (choice).

sendcount

 Number of elements to send (integer).

sendtype

 Type of elements in send buffer (handle).

dest

 Rank of destination (integer).

sendtag

 Send tag (integer).

recvcount

 Maximum number of elements to receive (integer).

recvtype

 Type of elements in receive buffer (handle).

source

 Rank of source (integer).

recvtag

 Receive tag (integer).

comm

 Communicator (handle).

Output Parameters

recvbuf

 Initial address of receive buffer (choice).

status

 Status object (status). This refers to the receive operation.

25

By itself, the MPI_Sendrecv procedure sends sendcount and sendtype elements

from the sendbuf array. This sends a message identifier with the dest number in the

communicator during the sendtag process. Moreover, in the comm communicator, no

more than recvcount elements of the recvtype type with the identifier of the received

message recvtag are received into the recvbuf array. The state parameter is stored for

the received message. Whereas the same processor can be the recipient and the

sender at the same time. However, an intersection in the process address space of

received and transmitted data is not allowed. The MPI_SENDRECV and

MPI_SENDRECV commands can be used to receive and send in the usual way. In

this case, different data types and different lengths of transmitted messages are

allowed.

The topology of data transfer processes is built from certain communications

between the processors of a computer system. The following schemes of

communication processes can be noted:

1) designed for a small number of processors - a complete graph (any pair of

processes has a direct connection);

2) clear numbering and communication with only two neighboring processors

(except for the first and last) - a ruler;

3) when connecting the first to the last processors from the previous topologies,

a ring graph was taken;

4) if all processors have a connection with some control processor, it is called a

star topology;

5) The most easily implemented topology. It is effectively used in parallel

computations of numerical algorithms, as well as in partial derivatives. The structure

itself is a two- or three-dimensional rectangular grid - a lattice.

6) A particular version of the lattice structure is a hypercube. The peculiarity is

that there are only two processors for each dimension of the grid (i.e., the hypercube

contains 2N processors of dimension N).

For this work, the topology of the lattice was analyzes. The Hockney model [14] was

invoked to estimate the execution time of passing byte messages between two

processes:




ln
commT

*
_ 

,

where  – is the latency (the length of the message preparation for transmission), the

length of the transmission path (byte), and  – the bandwidth of the data link

(byte/second).

The length of the data transfer path depends on the type of process topology. For the

lattice topology pl  .

26

2.2 Analytical models for estimating the of energy consumption, memory

and time of collective operations characteristics

Information exchange can be divided into three types [2]:

1. Two-way exchanges (differentiated exchanges, point-to-point exchanges).

Two processes are involved in this exchange: the message sending function

(MPI_Send) and the message receiving procedure (MPI_Recv).

2. One-way connections. Obviously, here only one of the two branches actively

participates in the operation and implements remote access to the memory of the

second process for reading or writing (Remote Memory Access Џ RMA). MPI_Put

and MPI_Get are prime examples of such operations. Moreover, there are similar

operations in the SHMEM, BSP, and Uniied Parallel C libraries. In some

circumstances, such functions make it possible to avoid unwanted process

synchronization.

3. Participation of all program processes - collective operations (global, group

operations, collective communications). There are two types of root and non-root

operations. The first type includes: broadcast transmission (one-to-all, one-to-all) and

collector reception (all-to-one, all-to-one). Whereas to non-root (unrooted) exchanges

of the type "all-to-all" (all-to-all). For most types of algorithms, the execution time of

collective operations plays a very important role and their scalability directly depends

on this. To implement collective operations, a two-way exchange is used. There are a

number of ways for collective exchanges in the MPI libraries: by ring, recursive

doubling, recursive halving (recursive halving), Brook [23]. Moreover, for pairwise

exchange algorithms and algorithms, the ordering of branches into trees of different

types: binomial trees (binomial tree); balanced -ary trees, plane trees (lat-tree, linear

tree), chains (pipeline, -chains) [24].

The most important advantage of MPI is the existence of more complex types of

interactions, in which all processes associated with a particular communicator take

part. It is these interactions that are called collective.

When writing MPI programs, collective operations are often used. For example,

if it is necessary to distribute a variable or an array from one processor to all other

processors, or vice versa, it is not advisable to collect information in the same place

using point operations. While the use of collective - the best option.

Below are some of the distinguishing features of collective operations:

1) Lack of intersection of point-to-point operations with collective ones;

2) After the completion of its part, the subroutine in each process returns from

the collective operation, but this is not at all a sign of the completion of the entire

collective operation. It follows from this that collective operations are a blocking

operation.

3) the need for the same number of sent and received elements;

4) similar to the point above, but the point is in data types;

5) absence of message identifiers.

27

There is also the concept of global computational operations. These include

operations of addition, finding the maximum, etc. MPI_Reduce, MPI_Allreduce,

MPI_Scan, MPI_Reduce_scatter, can be attributed to the above type.

The syntax of MPI_Allreduce on С/C++:

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Input Parameters

sendbuf

 starting address of send buffer (choice)

count

 number of elements in send buffer (integer)

datatype

 data type of elements of send buffer (handle)

op

 operation (handle)

comm

 communicator (handle)

Output Parameters

recvbuf

 starting address of receive buffer (choice)

Figure 5 – The usage of MPI_AllReduce function.

There is a possibility of deadlocks given circular dependencies. Since when

sending-receiving both can be the same processor. Naturally, there are ways to avoid

this situation. For example, the use of various blocking techniques (it is possible to

divide processors into even and odd ones). In the collective exchange of information,

analytical models such as time, power consumption, and memory models can be used

to evaluate the performance of an algorithm.

28

Thus, for the analytical study of the execution time of the collective work

algorithm, the LogGP communication model [17] was used. Plus, the model applies

to both short and long transmitted messages. The LogGP collective operation

execution time estimation model is described by the following parameters:

L – is the maximum value of the latency of the message transmission of one

processor to another (latency);

o – the time interval during which the processor can not perform other

operations, i.e. When the processor is busy transmitting or receiving a message

(overhead);

g – is the minimum time interval between consecutive transmissions or

reception of a short message, 1/g is the capacity of the communication channel for

short messages (gap);

G – is the minimum time interval between consecutive transmissions or

reception of one byte of a long message, 1/G is the capacity of a communication

channel for long messages (gap per byte);

P – is the number of processors in the system.

Figure 6 - Spatial-temporal scheme of processor interactions in LogGP model:

processor 0 executes three message transferring to processor 1.

On figure 6 shows a space-time diagram of processor 0 sending three long

messages in sequence to processor 1 using the LogGP model. That is, at time o

processor 0 has completed the transmission of the first byte of the message to the

network, at time o + G the second byte of the message has been sent to the network.

Moreover, the last byte of the first message will be sent to the network.

o + (m - 1) G. Delivery of each byte of the message from processor 0 to

processor 1 takes L units of time. The first byte of message processor 1 arrives from

the network at time o + L. Reception of the entire message processor 1 ends at time o

+ L + (m - 1)G + o.

The sum of dynamic and static energy [18, 19] can be represented as a model of

energy consumption. Everyone knows that static energy is the energy consumed by

the system when the mode is on, but in an inactive state. Whereas the energy

consumption for computing, or receiving - sending messages, is called dynamic.

Considering only the energy for message transmission, but not spent on calculations

29

on local processors, studies were carried out. To create communication energy, it was

assumed that each message spends a fixed energy e. Let's introduce the notation for

the energy required to transfer each byte from the source memory to the target

memory as E.

So, the total energy consumption of the collective operation

L = T · P + D,

where T is the collective operation time (based on LogGP), P is the leakage

power, D is the dynamic energy consumption model. In this paper, dynamic energy

models are the sum of all the dynamic energies consumed by each processor.

To predict the used memory, a simple memory model is considered. It assumes

that each sent message is explicitly specified as a descriptor in the upload operation.

For example, that these descriptors have a constant size d. This descriptor size is

independent of the actual size of the message being sent (received). The maximum

memory required for any process is calculated.

2.3 Optimization of collective operation algorithms

The exchange of messages between processors is carried out by a directed

graph. In other words, a certain virtual topology. The most popular are distribution

algorithms, specialized algorithms, and trees in various forms. The latter can be used

to implement any collective communications and the transmission of messages is

standard from parent to child.

Consider a flat tree (FT) [20], where messages are sent directly. This algorithm

is one of the simplest. Figure 6 shows an example of such a tree for a personalized or

personalized operation. Green squares on the edges of the connection denote the

transmitted data of size s. Annotations in this and the following figures indicate the

end time of the processes in the example. In all figures, it was assumed that the data

is sent to the children of the process in order, starting from the very left. Although the

simplicity of the algorithm is a clear advantage, its sequential communication limits

performance.

To calculate the execution time for such an operation, the LogGP model uses the

formula:

(s) O-P sG) + (o = 1)-(PsG + oP + L = T_FT

Dynamic energy consumption for this algorithm is presented as

(s) O- sE) + (e P = sE) + (e 1)-(P = D_FT

The maximum storage in the root of the tree is (Figure 7)

 1)-(P d = M_FT .

30

Figure 7 – The implementation of the collective algorithm of a flat tree (FT)

with the number of processes (P=7).

Tree topologies are popular for root collective operations. In most cases,

ordinary trees are used (when the number of child nodes is the same). This view gives

superior to flat tree topics, performing collective operations, processes

simultaneously perform interactions and, thus, achieve higher performance. Figures

8a and 8b show the transmission of personalized and non-personalized messages

using the binary tree algorithm. Whereas the execution time of the k-dimensional tree

algorithm of a non-personalized operation in the LogGP model is calculated by the

formula

)1(log)(log)(])[log sG) + (ok + (L = T_KT OPsOPksGkoLPo kkk 

Dynamic energy consumption for this algorithm is presented as

 (s) O - sE) + (e P = sE) + (e 1) - (P = D_KT

The maximum required storage in the root node of the tree is estimated by the

formula

kd, = M_KT

since each process sends a message to at most k-child computing nodes.

Moreover, the execution time of the algorithm in the LogGP model for

personalized messaging using the k-dimensional tree algorithm is calculated by the

formula

 s)-O(logP+O(1)sGPPko)log+(L=j)k-P)([logsG+)) 1+o(k +P](L[log= T_KT k

i

k

][log

0ik

k

 

P

Dynamic energy consumption (for large k)

(sP), O P)sElog + (e P
1

i)-P]([logksE +1) - e(P =) (D_KT kk

1][log

0i

][log kk  




k
i

PP

31

and memory consumption is the same as non-personalized data transfer

kd, = M_KT

a) b)

Figure 8 – The implementation of the collective binary tree algorithm (KT): a)

personalized transfer; b) non-personalized transfer.

The very famous Butterfly Graph (BF) [21] demonstrates a binary scheme for

fast data exchange between all processes, with the number of processes P being a

power of two. The implementation of the BF algorithm consists of steps, where P is

the number of processors. At level k, one can observe data exchange between streams

spaced 2k apart. On figure 9b and 9c, one can see the scheme of the BF algorithm

with the number of nodes P = 8 for personalized and personalized messaging,

respectively.

The execution time of the BF algorithm of non-personalized data transfer in the

LogGP model can be represented by the formula

PL)log +sG + (2o = T_BF 2

dynamic energy consumption

 PsE)Plog + (e = D_BF 2

with consumed memory P dlog = M_BF 2 .

The recursive doubling algorithm [22] as well as the Brooks algorithm [23]

implement the BF scheme for personalized messaging. The execution time of these

personal algorithms can be represented by the formula below:

(s), O - sGPP L)log + (2o = 1) - (P GsP L)log + (2o =) (T_BF 22 

dynamic energy consumption can be modeled as

)()log()1(log_ 22 sPOsEPPePPPsEPePBFD 

32

and their need for memory

P. dlog = M_BF 2

Figure 9 – The implementation of the collective algorithm Butterfly (BF): a)

personalized transfer; b) non-personalized transfer.

Based on collective algorithms, to be more precise, a flat tree (FT) and a regular tree

(KT), the time, energy and memory costs for the execution of the collective

MPI_Reduce procedure were considered. The LogGP parameters used the previously

described characteristics measured for the Intel Phi processor using parallel MPI

technology: L=6 µs, o=4.7 µs, G=0.73 ns/B [24]. The parameter e, which is

responsible for the expenditure of the necessary energy for the exchange of messages

between the processors, has the value e=16.5 pJ. Moreover, the energy E required to

transfer each byte of a message from the source memory to the destination memory

was equal to E=8.1 nJ/B [25-30].

Summing up, it can be said that the optimal collective algorithms with respect to

the execution time of the algorithm demonstrate non-optimal dynamic energy costs.

Moreover, the energy cost of the fastest algorithm is asymptotically higher compared

to the energy cost of the slower algorithm. In addition, it is shown that large amounts

of memory are needed for optimal algorithms in relation to the energy consumed. On

figure 10 shows graphs of execution time, power consumption, and memory for a

non-personalized MPI_Allreduce collective operation using the Flat Tree (FT) and

Binary Regular Tree (KT) algorithms. From the results of the runtime graphs, it can

be said that the binary regular tree (KT) algorithm is a more rational option regarding

the execution time of the flat tree (FT) algorithm. Nevertheless, the binary regular

tree (RT) algorithm performed worse than planar trees in terms of the energy model

for a large number of processes. But the opposite can be said in the issue of memory

consumption by algorithms. This can be explained in direct proportion to the number

of child computations k nodes. As a result, it can be admitted that each of the

algorithms has its own advantages and depends on certain metrics [11, 31–36].

Schedules were compiled to perform the collective data exchange of the

MPI_Allreduce operation using two different collective algorithms (Figure 11).

33

a) Runtime

b) Energy

c) Memory

Figure 10 – The execution time, energy consumption and memory dependence of the

non-personalized MPI_Allreduce function by using the flat tree (FT) algorithm and

the binary regular tree (KT).

0

20

40

60

80

100

120

140

160

3 7 15 31 63
R

u
n
ti

m
e,

µ
s

Number of processors, p

Runtime

T_FT T_KT

0

10

20

30

40

50

60

3 7 15 31 63

D
y
n
am

ic
 E

n
er

g
y
,

µ
J

Number of processors, p

Energy consumption

D_FT D_KT

0

500

1000

1500

2000

2500

3 7 15 31 63

M
em

o
ry

,
B

Number of processors, p

Memory consumption

M_FT M_KT

34

a) a flat tree (FT)

b) a binary regular tree (KT)

Figure 11 – The non-personalized MPI_Allreduce function: a) a flat tree algorithm

(FT); b) a binary regular tree (KT).

Figure 11 compares the theoretical data with the obtained collective work time

for two different algorithms based on the LogGP communication model. So it can be

noted the smaller time spent on the MPI_Allreduce operation for the flat tree

algorithm.

Based on the data in Table 1, it can be noted the dependence of the main

characteristics of the parallel algorithm, such as execution time, power consumption,

and memory of the non-personalized MPI_Allreduce collective operation using the

flat tree (FT) algorithm and the binary regular tree (BT). Moreover, in this table, it is

necessary to emphasize the merits of each algorithm, depending on the choice of

evaluation metric.

0

20

40

60

80

100

120

140

160

3 7 15 31 63

E
x
ec

u
ti

o
n

 t
im

e,
 1
0
-6

Number of processors, p

theor_time pract_time

0

50

100

150

200

250

300

3 7 15 31 63

E
x

ec
u

ti
o

n
 t

im
e,

 1
0

-5

Number of processors, p

theor_time pract_time

35

Table 1 – Comparative analysis of the simulation time, energy and memory of

sequential and parallel calculations for different sizes.

 Flat tree algorithm k-regular tree algorithm

Number

of

processo

rs

Runtime Energy Memory Runtime Energy Memory

3 8.09669 0.19445 96 5.74493 0.617093 128

7 20.0272 0.453715 224 8.010156 2.55021 128

15 46.348 0.972248 480 11.20013 7.60487 128

31 152.254 2.000931 992 22.783 19.9296 128

63 104.542 4.08344 2016 25.8021 48.8656 128

36

3 BASIC EQUATIONS OF HYDRODYNAMICS FOR MATHEMATICAL

MODELING OF PHYSICAL PROCESSES

By now, it is becoming obvious that all the problems that arise in aerodynamics

and hydrodynamics in the numerical solution of the Navier-Stokes equations are

unlikely to be solved even when using the most powerful computers with tens and

even hundreds of billions of operations per second. Therefore, in connection with

their ever-increasing use in solving scientific and technical problems, it is important

to provide the greatest possible scientific and practical base. This is facilitated by the

deep penetration of mathematical modeling methods into a particular subject area.

3.1 Law of mass conservation. Continuity equation.

In the dynamics of a discrete system of material points, dynamic characteristics,

including inertial ones, were attributed to individual points of the system. In the case

of an absolutely rigid body, both total characteristics, but related to sharply defined

areas of the rigid body, and forces concentrated at specific points of the rigid body,

moments of forces were considered. In the dynamics of continuums (liquids, gases,

elastic and other "solid" deformable bodies), this approach is replaced by the

assignment of continuous distributions of dynamic and, in general, physical quantities

over a continuum, characterized by the distribution density of these quantities.

The first example of such a problem can be the mass distribution density in the

form of the limit of the ratio m of the mass of a small volume  , containing a

given point M, to the volume  , when the latter tends to zero, shrinking to the point

M. The ratio


m
 is called the average density in the volume  , and the limit of this

ratio  at is the density of the medium at a given point M and is denoted by the

letter  , so that




 






m

0
lim

It contracts to the point M and get










mm







 0
lim (1)

This equation (1) is followed by expressions for the mass of an elementary

volume in terms of the density 

 m (2)

and the mass  of the finite volume allocated in the medium 

37




m

Differentiating equation (2) with time t, it obtains

    0)( 


 
dt

d

dt

d

dt

d
m

dt

d

Considering that the mass does not change with time.

Let's use the definition

    V
dt

d
div

Given the above expression, it will be possible to rewrite the equation in this

form

0div  


V
dt

d

Finally, it can be written in the form

0div0div 







 V

dt

d
V

dt

d







Expanding the equations taking into account the total derivative, it will be

possible to write in the form

z
w

y
v

x
uV

tdt

d































t
grad

Then the continuity equation can be written in the form

.0divgrad 



VV

t




Now, it uses these properties

  VVV divgraddiv  

38

In the final form, the continuity equation for the compressible case will look like

  .0div 



V

t




For the incompressible case, using the property .0




t


, the continuity

equation can be rewritten in the form

.0div V or .0div V

In the final case, the continuity equation for the incompressible case looks like

this:

.0div 















z

w

y

v

x

u
V

3.2 The momentum theorem. Momentum equation.

According to the general theorem on the change in the main vector of the

system's momentum: the time derivative of the main vector of the system's

momentum is equal to the main vector of external forces applied to the system. The

individual derivative of the main vector is the amount of motion of the liquid volume

and surface forces applied to particles located respectively in the volume and on the

surface bounding it.

 Vk

k - the amount of movement.

The main momentum vector in the entire volume  is equal to the sum or

integral of the elementary quantities of motion




Vk

The main vectors of external volumetric and surface forces will be respectively

equal to




F
 and 



np

39

Thus, just by the momentum change theorem, it leads to the equality

 


 npFV

Differentiate with respect to time the first term on the left of the equation and

obtain

  
 

 npFV
dt

d
 (3)

On the left side of equation (3), it performs the transformation

)()()(
 

  
dt

d
V

dt

dV
V

dt

d
V

dt

d

Using the property for the last term     .0 m
dt

d

dt

d
 , it rewrites the

above equation in this form


 

  dt

dV
V

dt

d

In the last term on the right-hand side of equation (3), it makes a change and,

according to the Gauss theorem, it has results equivalent to each other

   
 

 332211 pnpnpnpn

It uses the Gauss theorem and obtain

  


 























3

3

2

2

1

1
332211

x

p

x

p

x

p
pnpnpn

or the above equation can be written in this form

   
 

 PnPpn div

40

It substitutes the result obtained into equation (3) and obtain

 


 PF
dt

dV
div

Making some transformations

 


 0)(divPF
dt

dV

taking into account the arbitrariness of the volume of integration  , it arrives at

the following two possible expressions for the momentum equation of a continuous

medium with stresses:

3

3

2

2

1

1

x

p

x

p

x

p
F

dt

dV














 

In tensor form, the momentum equations look like this:

k

ki
i

k

i
k

x

p
F

x

V
V

t

V
























In a rectangular Cartesian coordinate system, the momentum equations in

expanded form has the following form

3

31

2

21

1

11
1

3

1
3

2

1
2

1

1
1

1

x

p

x

p

x

p
F

x

V
V

x

V
V

x

V
V

t

V














































3

32

2

22

1

12
2

3

2
3

2

2
2

1

2
1

2

x

p

x

p

x

p
F

x

V
V

x

V
V

x

V
V

t

V














































3

33

2

23

1

13
3

3

3
3

2

3
2

1

3
1

3

x

p

x

p

x

p
F

x

V
V

x

V
V

x

V
V

t

V














































41

3.3 Navier-Stokes equations. Newton's hypothesis.

The generalized Newton's law gives a linear relationship between the stress

tensor and the strain rate tensor, which is expressed in the case of an isotropic

medium by the tensor relation

bESP 


a (4)

the expression of the generalized Newton's law for an incompressible viscous

fluid looks like

V def2-pEpES2P  


or in component form,













































jiif
x

V
p

jiif
x

V

x

V

j

i

i

j

j

i





2

Pij

Equation (4) is the rheological equation of a Newtonian incompressible viscous

fluid. Expanded form the formulas of the accepted connection (4) in the Cartesian

coordinate system

1

1

11 2P
x

V
p




 

2

2

22 2P
x

V
p




 

3

3
33 2P

x

V
p




 






















1

2

2

1

2112 PP
x

V

x

V























2

3

3

2
3223 PP

x

V

x

V


42






















3

1

1

3

3113 PP
x

V

x

V


Substituting these expressions into the equations of motion and using the

property, it obtains


































































































































































3

3

2

2

1

1

1
2

3

1

2

2

2

1

2

2

1

1

2

1

3

1

1

3

31

2

2

1

21

1

1

2

x

V

x

V

x

V

xx

V

x

V

x

V

x

p

x

V

x

V

xx

V

x

V

xx

V
p

x





At the end, it obtains the Navier-Stokes equations for an incompressible viscous

fluid:




























































2

3

1

2

2

2

1

2

2

1

1

2

1

1

3

1
3

2

1
2

1

1
1

1

x

V

x

V

x

V

x

p
f

x

V
V

x

V
V

x

V
V

t

V





























































2

3

2

2

2

2

2

2

2

1

2

2

2

2

3

2
3

2

2
2

1

2
1

2

x

V

x

V

x

V

x

p
f

x

V
V

x

V
V

x

V
V

t

V





























































2

3

3

2

2

2

3

2

2

1

3

2

3

3

3

3
3

2

3
2

1

3
1

3

x

V

x

V

x

V

x

p
f

x

V
V

x

V
V

x

V
V

t

V


3.4 Discretization of governing equations

For the numerical implementation of the set mathematical model, discretization

is carried out using the finite volume method. To use the finite volume method, the

formulated equations are written in the integral form

  



S S

dqndSgradndS . (5)

Further use of the finite volume method depends on the type of computational

grid (structured or unstructured).

43

3.5 Incompressible Navier-Stokes equations. Dynamic similarity

(dimensionless).

Let us proceed to the consideration of conditions for the similarity of two

isothermal flows of Newtonian viscous incompressible fluids with different, non-

constant densities and viscosities. Let us reduce the Navier-Stokes equations to a

dimensionless form, choosing as the scales of time, length (in particular, coordinates),

velocity, pressure and body forces, respectively, some constant values characteristic

of the flow PULT ,,, 0 .

Denoting the dimensionless values of time, position coordinates, velocity,

pressure, and forces with an upper underline, it was assumed (here it is more

convenient to use letter indexing: x, y, z, u, v, w) that

0U

u
u 

,
0U

v
v 

,
0U

w
w 

, P

p
p 

L

x
x 

, L

y
y 

, L

z
z 

, T

t
t 

.

Let us transform these expressions to the form

0Uuu  , Lxx  , 0Uvv  ,

Lyy  , 0Uww  , Lzz  , (6)

Ppp  , Ttt  ,

where

0U

L
T 

Consider the Navier-Stokes equations

1))(
1

2

2

2

2

2

2

z

u

y

u

x

u

x

P

z

u
w

y

u
v

x

u
u

t

u










































 (7)

2))(
1

2

2

2

2

2

2

z

v

y

v

x

v

y

P

z

v
w

y

v
v

x

v
u

t

v









































 (8)

44

3))(
1

2

2

2

2

2

2

z

w

y

w

x

w

z

P

z

w
w

y

w
v

x

w
u

t

w










































 (9)

4) 0














z

w

y

v

x

u
 (10)

It substitutes (6) into equations (7), (8), (9) and (10) and for simplicity, it omits

the underscores and write in the form.

1))()(
2

2

2

2

2

2

2

0

2

0

2

0

z

u

y

u

x

u

L

U

x

P

L

P

z

u
w

y

u
v

x

u
u

L

U

t

u

L

U











































2))()(
2

2

2

2

2

2

2

0

2

0

2

0

z

v

y

v

x

v

L

U

y

P

L

P

z

v
w

y

v
v

x

v
u

L

U

t

v

L

U











































3))()(
2

2

2

2

2

2

2

0

2

0

2

0

z

w

y

w

x

w

L

U

z

P

L

P

z

w
w

y

w
v

x

w
u

L

U

t

w

L

U











































4) 0)(0 














z

w

y

v

x

u

L

U

Reducing the momentum equations by
L

U 2

0 , and the continuity equation by
L

U 0 , it

obtains

1))(
2

2

2

2

2

2

0

2

0 z

u

y

u

x

u

LUx

P

U

P

z

u
w

y

u
v

x

u
u

t

u






































 



2))(
2

2

2

2

2

2

0

2

0 z

v

y

v

x

v

LUy

P

U

P

z

v
w

y

v
v

x

v
u

t

v






































 



3))(
2

2

2

2

2

2

0

2

0 z

w

y

w

x

w

LUz

P

U

P

z

w
w

y

w
v

x

w
u

t

w






































 



4) 0














z

w

y

v

x

u

45

It can introduce the following dimensionless one-term complexes, called

"similarity numbers":

2

0U

P
Eu


 ,



0Re
LU



Eu is the Euler number, Re is the Reynolds number.

And using these dimensionless numbers, it rewrites the momentum equations

and continuity equation in this form

1))(
Re

1
2

2

2

2

2

2

z

u

y

u

x

u

x

P
Eu

z

u
w

y

u
v

x

u
u

t

u








































2))(
Re

1
2

2

2

2

2

2

z

v

y

v

x

v

y

P
Eu

z

v
w

y

v
v

x

v
u

t

v








































3))(
Re

1
2

2

2

2

2

2

z

w

y

w

x

w

z

P
Eu

z

w
w

y

w
v

x

w
u

t

w








































4) 0














z

w

y

v

x

u

3.6 Incompressible Navier-Stokes equations for curvilinear coordinates

Carrying out numerical simulation for complex areas, the transformation of

coordinates from the Cartesian to the generalized coordinate system is carried out. So

the transformation between the Cartesian system (),,(zyxx ) and the curvilinear

coordinate system (),,( ) occurs using such relations ,..,  xx and ,.., xx  ..



















































100

010

001

zyx

zyx

zyx

zzz

yyy

xxx













The Jacobian is defined in this form

46






























zzz

yyy

xxx
zyx

J
),,(

),,(

Figure 12 (a) - Curvilinear coordinate system; (b) Cartesian coordinate system.

Now it will be necessary to replace the derivatives with respect zyx ,, to  ,, ,

then it turns out in this form

ji

j

i xx 
















then

j

j








Given this ratio, it can be written as




 j

i

JJ 























i

ij

i

JgJ


2

j

i

i

i U
x

u









47

where

jiijg  

Using these expressions, the Navier-Stokes equation can be rewritten in this

form



































































i

k

ik

i
k

i

i

ki

j

j

i

k

ij

j

j

iji

j

jij

j

i

x

u

xx
JU

xx
JUg

p
guJUUJUJU

t















2

))(()(

)()(

0)(



j

j

JU


where

)(
m

k
m

ji

i

i

k x
U

xx

u






















48

4. NUMERICAL INVESTIGATION OF THE EFFICIENCY OF HIGH

PERFORMANCE COMPUTING FOR BACKWARD STEP FLOW

PROBLEMS

4.1 Problem statement

Construction is one of the fastest growing areas today. But the natural

aerodynamics between buildings is always taken into account. To do this, you must

first take into account ventilation before the start of the project itself. One of the

optimal solutions is to build a mathematical model of the air flow. Below are

numerical solutions for the wind flow around architectural obstacles, taking into

account vertical buoyancy forces. For the calculation, the Navier-Stokes equation, the

control volume method for approximation and the projection method for the

numerical solution were used. The Jacobi method for each time step by iterative

method was used for the Poisson equation satisfying the discrete continuity equation.

The test problem was solved to check the correctness of the mathematical model and

the numerical algorithm. The results of other authors in the numerical form were used

for comparison with the numerical solutions of the reverse flow step with vertical

buoyancy forces. For parallelization of the numerical algorithm, 1D, 2D and 3D

decompositions were used. Having made a theoretical analysis of the efficiency for

the above types of decomposition, the best method of domain decomposition was

determined. And also real computational experiments were carried out for this

problem. Moreover, the resulting numerical algorithm with the best domain

decomposition method and mathematical model can be widely used for various

complex flows with vertical buoyancy forces.The increased pace of construction in

modern large cities and, in particular, Almaty, leads to a tightening of architectural

structures. Due to the increase in the population of cities and to save space, mostly

high-rise buildings are being built. As a consequence, this entails such consequences

as a violation of the natural aerodynamics of the city, which in turn leads to increased

gas contamination of the city, the accumulation of heavy metals in the lower

atmosphere, and to the violation of the local climate. The building codes and norms

currently used in the construction and design of buildings do not contain aerodynamic

criteria and coefficients indicating the optimal distance between buildings of different

heights. When determining these standards, various natural and climatic features are

taken into account, such as wind loads, insolation, etc. Fire safety requirements are

also taken into account. However, the above-mentioned documents do not take into

account the factor of natural aerodynamics of space between neighboring buildings.

The distance between buildings and structures is considered to be the distance

between the outer walls or other structures. As a result, when designing, the distances

between building objects are laid, which can not provide free movement of the wind

vortex, which leads to a disturbance of the natural air flow. In this thesis, a model of

aerodynamics between two high-rise buildings is considered. Parameters such as the

optimal distance between two buildings, climate change are taken into account in this

mathematical model. Stream splitting with sudden geometry expansion or subsequent

49

reconnection is quite common in many technical streams. The separation zone and

flow recirculation has a significant impact on the performance of heat exchange

devices, such as cooling devices in electrical engineering, cooling channels for

turbine blades, combustion chambers, and many other heat exchange surfaces that

occur in equipment. There are many works without taking into account the forces of

buoyancy, which are devoted to the movement of fluid with separation and

reconnection of flows. Nevertheless, this process is very important, which is

confirmed in various works. For example, the study of flows with separation zones

and their development of experimental and theoretical methods [37-45, 119, 122,

123, 125]. As well as construction equipment [37-39]. Isothermal flows in fluid flows

are considered in [46-48]. Such as Aung [49, 50], Aung et al. [51], Aung and Worku

[52], Sparrow et al. [53, 54] and Vorobey and Chuck [55] also investigated heat

transfer in flows. However, the heat transfer characteristics and the buoyant force on

the streamlined flow are not taken into account. At low speed and with a large

temperature difference, these effects are significantly noticeable. Moreover, the finite

element method was studied when applied to a two-dimensional square resonator

with different heater positions and sizes [62]. In turn, the same finite volume method

was used by Oztop and Abu-Nada [63] to numerically study convection in

rectangular shells partially heated from the side wall. The paper also shows the

influence of buoyant forces on the characteristics of the flow and heat transfer in

individual flows. Figure 13 shows the numerical results for a laminar mixed-

convective air flow (Pr=0.7) in a vertical two-dimensional channel with a reverse step

to preserve the buoyancy effect. The buoyancy force affects different parameters. Of

great interest are the distributions of velocity and temperature, ligation lengths and

coefficients of friction shown to demonstrate the effect of the buoyancy force.

50

Figure 13 - Schematic representation of the backward-facing step flows.

4.2 Mathematical Formulation of the Problem

Figure 13 shows a two-dimensional laminar convective flow in a vertical channel

with a sudden expansion behind a backward ledge of height s. A constant temperature

similar to the intake air temperature T0 exists permanently on a straight duct wall. Tw

desired heating temperature for the stepped wall below the stage, constant

temperature. The upper part of the stepped wall and the reverse side are taken as the

adiabatic surface. xi input length and xe output lower channel length have the

corresponding dimensions. Despite the assumption that these lengths are infinite, the

length limit is Le = xe + xi. H = h + s is the height of the large area below the stage,

while the smaller area is just height. Moving up the channel, the air has an average

speed u0 and a constant temperature T0. The gravitational force g is directed

vertically downward. The Boussinex approximation and the assumption of constant

properties were used to describe this physical problem. This system of equations in

an unenclosed form can be written as:

1)
0










Y

U

X

U

 (15)

51

2)


22

2

2

2

ReRe

1 Gr

Y

U

X

U

X

P

Y

U
V

X

U
U

t

U







































 (16)

3)





































2

2

2

2

Re

1

Y

V

X

V

Y

P

Y

V
V

X

V
U

t

V

 (17)

4)
































2

2

2

2

RePr

1

YXY
V

X
U

t



 (18)

The dimensionless parameters in the equations given above are defined by the

formula:

0uuU  , 0uV  , sxX  , syY  ,

   00 TTTT w  ,
2

00upP  ,

Pr , su0Re  ,  
23

0  sTTgGr w  .

Where α – the temperature diffusion, ν – the kinematic viscosity, and β – the thermal

expansion coefficient are estimated at the film temperature Tf=(T0+Tw)/2 (Figure 14).

Boundary conditions:

(a) Inlet conditions: At the point iXX  and sHY 1 : 0uuU i , 0V ,

0 , 
2Re

Gr

x

p





.

where iu is the local distribution of velocities at the inlet, which is assumed to

have a parabolic profile and 0uu i an average inlet velocity, that is, given by formula

  22

0)()(6 sHHsysHyuu i 

(b) Outlet conditions: At the point eXX  and sHY 0 : 0 XU ,

022  X , 0 XV , 
2Re

Gr

x

p





.

(c) on the top wall: At the point sHY / and ei XXX  : 0U , 0V , 0 ,

0




y

p .

52

(d) on the wall of the upper stage: At the point 1Y and 0 XX i : 0U ,

0V , 0 Y , 0




y

p .

(e) on the wall of the lower stage: At point 0X and 10 Y : 0U , 0V ,

0 X , 0




x

p
.

(f) on the wall below the stage: At the point 0Y and eXX 0 : 0U , 0V ,

1 , 0




y

p .

The last term on the right-hand side of equation (16) is the contribution of the

buoyancy force. The length of the downstream flow from the simulation area was

chosen to be 70 steps (
eX =70). The upper length of the design area was chosen to be

5 steps (i.e.
iX =5), and the velocity profile at the input area was set as parabolic

profile, like   22

0)()(6 sHHsysHyuui  , and temperature was chosen as

uniform 0T .

Figure 14 - Boundary conditions.

4.3 Numerical algorithms

The projection method [57-60] was used to solve this system of equations

numerically. The finite volume method [56-59] was used for approximation. At the

first stage, it is assumed that momentum transfer occurs only due to convection and

diffusion, and the intermediate velocity field is calculated by the fourth-order Runge-

Kutta method [56-59]. At the second stage, according to the found intermediate

velocity field, there is a pressure field. The Poisson equation for the pressure field is

53

solved by the Jacobi method. At the third stage, it is assumed that the transfer is

carried out only due to the pressure gradient. At the fourth stage, the equations for

temperature are calculated by the fourth-order Runge-Kutta method [56-59].

,
Re

)
Re

1
(.

2

**
*





 

d
Gr

dnuuud
t

uu
I i

n
n






,)(.
*





  

d
t

u
dpII



,.
*1

p
t

uu
III

n




 

,)
PrRe

1
(. **

*





 

dnud
t

IV i

n
n


 

4.4 Parallelization algorithm

For numerical simulation was constructed a computational mesh by using the

PointWise software. The problem was launched on the ITFS-MKM software using a

high-performance computing. The equations are approximated by the finite volume

method (FVM) and used collocated grid, because it makes parallelization of

numerical algorithm simple and efficient to use domain decomposition method. For

pressure velocity coupling is used Rhie-Chow interpolation. This relation can

interpolate the surface pressure of the cell. The scheme of the central pressure

difference was built on the basis of the above pressure. In turn, this scheme makes it

possible to avoid the checkerboard effect, and also connects adjacent pressures. a

first-order upstream flow scheme was used for convective flow. 1D, 2D and 3D

decompositions were used to fully parallelize this numerical algorithm. Geometric

partitioning of the computational grid was chosen as the main approach. Given this, it

can be said that there are three ways to exchange the values of the grid function on

the computing nodes of a one-dimensional, two-dimensional and three-dimensional

grid. After the domain decomposition stage, when parallel algorithms are built on

separate blocks, a transition is made to the relationships between the blocks, the

simulations on which will be executed in parallel on each processor. For this purpose,

a numerical solution of the equation system was used for an explicit scheme, since

this scheme is very efficiently parallelized. In order to use the domain decomposition

method as a parallelization method, this algorithm uses the boundary nodes of each

subdomain in which it is necessary to know the value of the grid function that borders

on the neighboring elements of the processor. To achieve this goal, at each compute

node, ghost points store values from neighboring computational nodes, and organize

the transfer of these boundary values necessary to ensure homogeneity of calculations

for explicit formulas [61].

The procedures of the MPI library [61] were used for data transfer.

54

Some theoretical analysis was carried out to determine the effectiveness of

different decompositions. For this, Tcalc was taken as the sequential program time

divided by the number of processors plus the transfer time Tp = Trast/r + Tcom.

While transfers for various domain decomposition methods can be roughly expressed

in terms of throughput [59, 61]:

22 21 xNtT send

D

com 

2/122 42 pxNtT send

D

com  (19)

3/223 62 pxNtT send

D

com 

where N – the number of nodes in the computational mesh, p - the number of

processors (cores), sendt – the time of sending one element (number). It should be

noted that for different decomposition methods, the data transmission cost can be

represented as)(2 21 pxkNtT send

D

com  in accordance with the formula (19), where k(p) is

the proportionality coefficient, which depends on the domain decomposition method

and the number of processing elements used [59, 61]. At the first stage, one common

program was used, the size of the array from start to run did not change, and each

element of the processor was numbered by an array of elements, starting from zero.

For the test simulation well known problem – 3D cavity flow was used. Nevertheless,

despite the fact that theoretical analysis showed that 3D decomposition gives the best

parallelization option (Figure 15), judging by the computational experiments, it can

be said that the best results were obtained using 2D decomposition, when the number

of processes varies from 25 to 144 (Figure 15) [59, 61].

Moreover, after a preliminary theoretical analysis of the graphs, the following

characteristics can be given. If communication time is not taken into account, the

simulation time should be approximately the same for the same number of processors

and decrease by Tcalc/p.

In fact, judging by the calculated data, the use of 2D decomposition with

different computational grids gives the minimum cost of modeling and cost graphs

are much higher, depending on the simulation time, on several processors taken with

Tcalc/p [59, 61].

To substantiate these results, it is necessary not to forget the assumptions that

were made in the preliminary theoretical analysis of the effectiveness for this task.

The first assumption: regardless of the distribution of data over the elements of the

processor, the same amount of computational load is performed. This assumption

should lead to the same time costs. The second assumption is that the time taken to

interprocessor transfer of any degree of the same amount of data does not depend on

their choice of memory. For a deeper understanding, the following sets of

computational simulation tests were carried out. For evaluation, the sequence of the

first approach was considered, when the program is executed in a single-processor

55

version and, thus, models various methods of data decomposition in the geometric

domain with the same amount of computation performed by each processor [59, 61].

4.5 Results of numerical calculation

On Figure 13 shows the geometric parameters: channel length L=75, channel

height H=2, step height S=1. Dimensionless numbers equal to Re=50, Pr=0.7,

Gr=19.1 [45] were used in the numerical results.

Figure 15 - Speed-up for various domain decomposition methods of the

computational domain.

Comparison of numerical data with data from Lin et al. [45] at the point x/xf=0.5,

where xf=2.91 is shown in Figure 16 for the longitudinal velocity profile. Whereas

comparison of temperature profiles with numerical data from Lin et al. [45] at the

56

point x/xf=0.5, where xf=2.91 is shown in Figure 17. Judging by the figures, it can be

said that there is a similarity between the results of this work and those of Lin et al.

[45]. Moreover, in Figure 18 it can be seen the streamlines and the contour of the

horizontal velocity for the dimensionless numbers Re=50, Pr=0.7 and Gr=19.1. With

the same dimensionless quantities in Figure 20 shows the temperature profile. For a

better understanding of this process, from Figure 18, 19 and 20 one can see the

development of a reverse stepwise flow with a vertical buoyancy force: the origin and

development of the flow reconnection region, taking into account the buoyancy

forces.

Figure 16 - Velocity profile with vertical buoyancy forces for dimensionless

number Re = 50, ΔT = 1 oC, x/xf = 0.5, where xf = 2.91.

57

Figure 17 - Temperature profile with vertical buoyancy forces for dimensionless

number Re = 50, ΔT = 1 oC, x/xf = 0.5, where xf = 2.91.

Figure 18 - The contour of the horizontal velocity component with streamlines

for dimensionless numbers Re=50, Pr=0.7 and Gr=19.1.

58

Figure 19 - The contour of the vertical velocity component for dimensionless

numbers Re=50, Pr=0.7 and Gr=19.1.

Figure 20 - Temperature contour for dimensionless numbers Re=50, Pr=0.7

and Gr=19.1.

4.6 Conclusion

The zone of flow confluence behind the reverse step, taking into account the

buoyancy forces, was used for numerical studies of the laminar flow. Thus, it was

possible to obtain some clarification in the internal flow behind the reverse scarp and

in the processes of reconnection of flows under the influence of temperature effects.

Moreover, data were obtained for a deep understanding of the appearance of

secondary zones. For a booming study of reverse stepwise flows, taking into account

the buoyancy forces [45], the distance from the ledge to the channel boundary is 4

times greater than the channel height. From the numerical data of the distribution of

velocities, the zones of formation of the primary reattachment of reverse stepwise

flows were obtained. Thus, the projection method was used to numerically solve the

system of Navier-Stokes equations. Moreover, it can be argued that the numerical

results have a small error. Since they were compared with the dimensionless numbers

59

Re=50, Pr=0.7 and Gr=19.1 by the numerical results of other authors [45]. It was

obtained by fully parallelizing the numerical algorithm to speed up the process. As

mentioned earlier, different types of decompositions (1D, 2D and 3D) were used. For

250 processors or less, 3D domain decomposition does not need as much time as 2D.

These conclusions were drawn on the basis of the numerical results of the test

problem of flow in a 3D resonator, in which the decomposition method of 1D, 2D,

and 3D domains was used. In theory, more time-consuming work is required for the

decomposition of the subject area. But for a given scale of the problem, a 2D

decomposition of the subject area is sufficient. That’s why for backward-facing step

flow with vertical buoyancy force is used 2D domain decomposition. It should also

be noted that setting the boundary conditions is an important process. In the future,

this mathematical model and a parallel numerical algorithm can be applied to various

complex flows taking into account the buoyancy forces.

60

5. NUMERICAL INVESTIGATION OF THE EFFICIENCY OF HIGH-

PERFORMANCE COMPUTING USING HYBRID PARALLEL

ALGORITHMS FOR AIRFLOW PROBLEMS IN A COMPLEX NASAL

REGION

The current trend in the development of high-performance computers opens up

new opportunities for developing highly effective methods for modeling complex

problems using multi-level decomposition and hierarchical parallelization of

computations. For most real physical processes with a large computational grid this

approach is the only practical way to create an adequate computing model of control

objects. In addition, traditional serial computers and computational schemes have

come to their technological limit. At the same time, a technological breakthrough in

the field of creating means for interprocessor and intercomputer communications

makes it possible to realize effective control in the distribution of computations for

various components by an integrated computer, which in turn is one of the key

properties of parallelism. Through the nasal cavity there is a primary recognition of

odors, through it the air is breathed, which passes into the alveolar state (it heats there

to physiologically normal temperature and is completely saturated with water vapor).

They serve as regulators of all air circulation, create a normal air temperature and are

completely saturated with water vapor, cleaned and disinfected. Normally, the airflow

passes through the nose at a speed of 6 L/min, this figure can be increased to 10

L/min. However, the nasal cavity depending on the cause of occurrence has

curvatures and can be divided as: Physiological Compensatory Traumatic. With the

aforementioned character of curvature, they negatively affect primarily the difficulty

of breathing. Nasal breathing is very important, a systemic part of our body’s vital

activity and any of its disturbances sooner or later cause negative consequences for

the human body. The main method of eliminating the curvature of the nasal cavity is

a surgical operation—septoplasty. However, it should be noted that the success of a

surgical operation at the best does not exceed 80%, which leads to a repeated surgical

operation. And also the surgical operation will depend on the experience and skill of

the surgeon. Naturally, to increase the percentage of success of a operation, it will be

necessary to accurately make nasal cavity corrections. Before the surgical

intervention due to X-ray images it is possible to evaluate the nature of the curvature

and with the help of numerical modeling it will be possible to correct and optimize

the nasal cavity in advance. Knowing the preliminary accurate correction of the nasal

sinus, the surgeon can increase the percentage of success of the operation that will

accordingly reduce the percentage of the reoperation [124].

The nasal cavity balances the inhaled air with the internal state of the body with

surprising efficiency. In the papers of Cole [64], Inglessted [65] and Webb [66], it

was generally agreed that the inhaled air through the nasal cavity reaches up to the

alveolar state (completely saturated with water vapor and at normal body

temperature) by the time it reaches the pharynx. And it practically does not depend on

a condition of ambient air which has arrived through nostrils. These results were also

obtained in the paper of Farley and Patel [67] who collected data in natural conditions

61

with air temperature readings along the upper respiratory tract, as well as Hannah and

Scherer [68], reflecting measurements of local mass transfer coefficients on the

gypsum model the human upper respiratory tract. Nevertheless, McFadden [69] noted

that the conclusions are valid for quiet breathing, in some circumstances at high

ventilation levels, conditioning of additional air should occur in the intrathoracic

airways in order to completely determine the inhaled air in the alveolar state [124].

Numerous studies have been aimed at assessing the hydration and temperature

regulation of the nasal cavity. However, mathematical models were based on

axisymmetric tubes or occupied quasistationary flows [70]. As a rule, these studies

confirmed the opinion that under normal conditions there is enough time for heating

and humidifying air in the nasal cavity. In addition, medications as well as surgical

procedures are being used with increasing speed to restore the structure and functions

of the nasal cavity [71]. For example, aromatic inhalations are used to improve

airflow and to reduce congestion, as well as rhinoplasty procedures are used to

overcome trauma or aesthetic deformities. These artificial interventions cause local

changes, and can affect the efficiency of transport phenomena of air. However,

precise intranasal characteristics and distribution of transport phenomena are not yet

known even for a normal (or healthy) state [72-76, 117, 118, 120, 124, 126].

Experimental examination of the nasal cavity is practically impossible, due to

the complex internal structure and dimensions, i.e. The introduction of any measuring

device or probe causes additional disturbance of the flow. Therefore, mathematical

modeling is one of the only approaches for studying the flow of air in the nasal cavity

[124].

5.1 Statement of the physical problem

Air flow that passes through the structure of the nasal cavity has a very difficult

path. The complex structure of the nasal cavity and complete three-dimensional

analysis of the steam flow, heat transfer in the inner part of the nasal mucosa requires

significant computational resources that prevent a systematic analysis of the relevant

factors (Figure 21) [124].

Having the available computational resources, a complex study of transport

mechanisms was carried out in two-dimensional form, through the cross sections of

the nose [124].

In addition, the following assumptions are made for numerical modeling [124]:

∙ The walls of the nasal cavity and nasal concha are assumed to be immovably

hard.

∙ The air flow in the nasal cavity is considered as a laminar flow, and the air as

an incompressible medium (since the Reynolds and Mach numbers are very small).

∙ The velocities on the walls of the cavity are taken as zero (u = 0, v = 0).

The walls of the nasal cavity are considered fully saturated with water vapor and

the temperature near the body due to the moist mucous layer reaches the vascular

vessels of the nasal wall.

62

Figure 21 - Nose model with a longitudinal section.

Thin features of the nose do not have exact dimensions, because there are differ-

ences in the structure of the nasal cavity in healthy people, so it is almost impossible

to determine the exact model of a “normal nose”. Thus, a simplified model of the

nose is developed, where the main essential signs of the nasal cavity are revealed.

The dimensions are taken from the averaged data of the human nasal cavity (Figure

22). The physical area of the problem is the second cross-section (Figure 22c “-2-”),

which is important for the study, because it is an area where a significant proportion

of the air flow takes place, and also it has a complex structure, through which the

basic functions of the nasal cavity are performed [124].

The mathematical model is constructed on the basis of the Navier-Stokes

equations, including the continuity equation, the momentum equation, and also the

energy (temperature) equation also relative humidity equations are used [77-79, 124].

,0U

UvpUU
t

U 21
)(





 ,

T
c

k
TU

t

T

p

2)(




 ,

CDCU
t

C 2)(




where U is the velocity vector, t is the time, p is the pressure, v is the

kinematic viscosity, T is the temperature, C is the humidity, pc is the specific heat

of the medium at constant pressure, k is the coefficient of thermal conductivity,  is

the density, D is the coefficient of molecular diffusion.

63

Figure 22 - Simplified nose model: a longitudinal section, b coronary section, c cross

sections at height h = 3, 13, 17, 20, 26, 33, 40 mm from the bottom point of the nasal

cavity, d perspective view.

The instantaneous velocity at the inlet in each cross section is assumed to have a

parabolic profile with a maximum velocity (UM)max that varies during the breathing

cycle. In the paper of Girardin et al. [80] measurements were made using laser

anemometry in the model of the human nose and it was found that the field flow

basically have layered parabolic velocity profiles in any cross section. At rest, a

normal adult breathes a volume about VT = 0.5 L (inhaling and exhaling) once a

minute at an average flow rate of about 0.125 L/s to each nostril. Accordingly, the

instantaneous velocity distribution at the input UM in the direction is given in the

following form [124]:

36

)12(
1

2
sin2)(),0,(

2
2

max

yyt
Uyxtu M

inin















The inlet boundary conditions for the temperature and relative humidity of the

external air are given in the following form:

CyxtTin  25),0,(,
3

2 /0047.0),0,(mOHkgyxtCin 

64

On the walls of the nasal cavity and nasal concha:

,0),,(yxtuwall ,0),,(yxtvwall CyxtTwall  37),,(,
3

2 /0438.0),,(mOHkgyxtCin 

The initial conditions are given in this form:

,0)0(0 tu .32)0(0 CtT  , ./0235.0)0(3

20 mOHkgtC 

5.2 Numerical algorithm

The projection method is used for a numerical solution of this system of

equations [81, 82]. Equations are discretized by the finite volume method [81, 83,

84]. At the first stage it is assumed that the transfer of the momentum is carried out

only through convection and diffusion, and an intermediate velocity field is calculated

by the fourth-step Runge-Kutta method [79]. In the second stage, according to the

found intermediate velocity field, there is a pressure field. The Poisson equation for

the pressure field is solved by the Jacobi method. Then at the third stage, it is

assumed that the transfer is carried out only due to the pressure gradient. Further at

the fourth stage, the equations for the temperature are calculated by the fourth-step

Runge- Kutta method. And in finally, equations for the relative humidity are

calculated, and also solved by the fourth-step Runge-Kutta method [72, 73, 79, 124].

5.3 Parallel implementation

Well known three dimensional lid-driven cavity problem is used to check

various geometric decompositions method. A computational grid was constructed

using the Pointwise software to carry out numerical simulation. The problem was

launched on the ITFS-MKM software complex using a high-performance cluster. A

cluster system (Intel(R) Xeon(R) CPU E5645 2.40 GHz CPU, 26 nodes with two

processors per node and totally number of cores are 312, 624 GB RAM) is used to

decrease CPU time. This numerical algorithm is completely parallelized using

various geometric decompositions (1D, 2D and 3D). Geometric partitioning of the

computational grid is chosen as the main approach of parallelization. In this case,

there are three different ways of exchanging the values of the grid function on the

computational nodes of a one-dimensional, two-dimensional, and three-dimensional

grid. After the decomposition stage, when parallel algorithms are built on separate

blocks, it was proceed to the relations between the blocks, the calculations on which

will be performed in parallel on each processor. For this purpose, a numerical

solution of the equation system was used for an explicit scheme, since this scheme is

very well parallelized. In order to use the decomposition method as a parallelization

method, this algorithm uses the boundary nodes of each subdomain in which it is

necessary to know the value of the grid function that borders on the neighboring

elements of the processor. To achieve this goal, at each computational node, fictitious

65

points store values from neighboring computational nodes, and organize the transfer

of these boundary values necessary to ensure homogeneity of calculations for explicit

formulas (Figure 23) [124].

Data transmission is performed using the procedures of the MPI library [61,

124].

By doing preliminary theoretical analysis of the effectiveness of various

methods of the computational domain decomposition for this problem, it will be

estimated that the time of the parallel program as the time of the sequential program

divided by the number of processors used Tcalc, plus the transmission time Tp =

Tcalc∕p + Tcom. While transmissions for different decomposition methods can be

approximately expressed through bandwidth [124]:

22 21 xNtT send

D

com 

2/122 42 pxNtT send

D

com  (20)

3/223 62 pxNtT send

D

com 

where
3N - the number of nodes in the computational grid, p - the number of

processors (cores), sendt - the time of sending one element (number) [124].

It should be noted that for different decomposition methods, the data

transmission cost can be represented as)(2 21 pxkNtT send

D

com  in accordance with the

formula (20), where)(pk is the proportionality coefficient, depending on the

decomposition method and the number of processing elements used [124].

Table 2 shows numerical values)(pk . It can be seen that if p> 5 and using 3D

decomposition this algorithm is more efficient, and for p> 11 and using 3D

decomposition, the necessary time of sending between the processors of the value of

the function
1

,,

n

kjiu
,

1

,,

n

kjiv
,

1

,,

n

kjiw
,

1

,,

n

kjip
 in a node with a smaller number of elements, it will

be expected that the time spent on data transmission will be minimal (Figures 24-26)

[124].

66

Figure 23 - Different methods of decomposition. Schemes of mechanisms for

the exchange of 1D, 2D and 3D decompositions.

67

Table 2. Dependence of the proportionality)(pk coefficient on the number of

processor elements and the decomposition method.
Number of

processes

3 4 5 6 10 11 12 16 60 120 250

1D

Decomposition

2 2 2 2 2 2 2 2 2 2 2

2D

Decomposition

2,31 2,00 1,79 1,63 1,26 1,20 1,15 1,00 0,51 0,36 0,25

3D

Decomposition

2,88 2,38 2,05 1,82 1,29 1,21 1,14 0.94 0,39 0,24 0,15

Figure 24 - Speed-up for various methods of decomposition of the

computational domain.

68

Figure 25 - Efficiency for various methods of decomposition of the

computational domain.

69

Figure 26 - Time of calculation without taking into account the cost of data

transfer for different decomposition methods.

Comparison of the results of parallelization by simple MPI procedures and the hybrid

OPENMP/MPI model of the Fourier method for solving the Poisson equation for

calculating the pressure field is presented in Figure 27. The problem was solved with

the distribution of the computational rectangular grid into computational subdomains

for each processor. The exchange of the required calculated values between the

processors is implemented using the MPI library for a simple MPI procedure and the

MPI and OPENMP libraries for the OPENMP/MPI hybrid model.

All calculations were carried out on cluster systems T-Cluster and URSA at the

Faculty of Mechanics and Mathematics, al-Farabi Kazakh National University using

70

128 × 128 × 128 and 256 × 256 × 256 computational grids. Computational

experiments were conducted using up to 250 processors. The results of the

computational experiment showed the presence of a good speed in solving problems

of this class. They are mainly focused on additional transmissions and time

calculations for various decomposition methods [124].

Figure 27 - Dependence of acceleration on the number of processors used for simple

MPI and hybrid OPENMP/MPI model.

At the first stage, one common program was used, the size of the array from start

to run did not change, and each element of the processor is numbered by an array of

elements, starting from zero. Despite the fact that according to the theoretical analysis

of 3D decomposition is the best option for parallelization (Figure 24), computational

experiments showed that the best results were achieved with 2D decomposition when

the number of processes varies from 25 to 144 (Figure 24) [124].

Based on a preliminary theoretical analysis of the graphs, the following

character can be noted. The calculation time without the cost of inter-processor

communications with different decomposition methods should be approximately the

similar for the equal number of processors and shrink by Tcalc∕p. In fact, the

calculated data (Figure 25) show that using 2D decomposition on various

computational grids gives a minimal cost for the calculation and the cost graphs are

significantly higher depend- ing on the computation time on several taken processors

Tcalc∕p (Figure 26) [124].

To explain these results, it is necessary to pay attention to the assumptions made

in the preliminary theoretical analysis of the effectiveness for this task. First, it was

assumed that, regardless of the distribution of data per one processor element, the

same amount of computational work was performed, which should lead to the same

time expenditure. Secondly, it was assumed that the time spent on interprocessor

sendings of any degree of the same amount of data does not depend on their choice of

0 2 4 6 8 1 0

N u m b e r o f p ro c e s s o rs

0

2

4

6

8

1 0

T e x t Id e a l

N = 2 0 0 (s ta t ic a r ra y)

N = 1 0 0 (s ta t ic a r ra y)

N = 5 0 (s ta t ic a r ra y)

N = 2 0 0 (d y n a m ic a r ra y)

N = 1 0 0 (d y n a m ic a r ra y)

N = 5 0 (d y n a m ic a r ra y)

s
p

e
e

d
 u

p
 (

=
T

1
/T

n
)

71

memory. In order to understand what is actually happening, the following sets of test

computational calculations were carried out. For the evaluation, the sequence of the

first approach was considered, when the program is executed in a version with one

processor, and thus simulates various ways of geometric decomposition of data for

the same amount of calculations performed by each processor [124].

5.4 Results of numerical calculation

As a result of numerical modeling of the aerodynamics of the human nasal

cavity, the following data were obtained. Also, to verify this numerical algorithm, the

calculation data from paper [77] has been used, which describes the profiles of the

longitudinal component of velocity and temperature in three cross sections: at a

distance x1=17 mm, x2=49 mm and x3=80 mm from the entrance (Figure 28). For

the numerical simulation, the corresponding parameters for air constants were used:

𝜌=1.12 kg/m3, 𝜇=1.9× 10−5 kg/ms, cp=1005.5 J/kgK, k=0.0268 W/mK,

D=2.6×10−5 m2/s [124].

Figure 29 shows the comparison of profiles for x1, x2 and x3 the longitudinal

velocity component of the calculation results and data from the article Naftali et al.

[77]. Figure 30 shows a comparison of temperature profiles for cross sections x1, x2

and x3. Figure 31 shows the relative humidity profiles for cross sections x1, x2 and

x3. In all the figures, numerical results were shown to be dimensionless [124].

It can be seen from the figures that when passing through narrow areas of the

nasal cavity air is heated downstream, and relative humidity also increases. And also

from Figure 30 it can be noted that behind the nasal septum the temperature increases

and the air temperature is heated to the alveolar state when reaching to the

nasopharynx. And at low ambient temperatures, relative humidity plays a very

important role. Figure 32 shows the longitudinal velocity component in the cross

section for time t=1 s. Figure 33 shows the transverse velocity component in the cross

section for time t=1 s. It can be seen from the figures that vortex currents appearing

from the nasal conchas, which play an important role in the process of heating the air.

Figures 34 and 35 show the temperature components, and the relative humidity in the

calculated area for time t = 1 s. It can be seen from the figures that when passing

through narrow areas of the nasal cavity air is heated downstream, and relative

humidity also increases [124].

Figure 28 - Evaluation in three locations for temperature and velocity for a cross

section.

72

Figure 29 - Comparison of the profile of the velocity component for the cross

sections 1x = 17 mm, 1x = 49 mm and 1x = 80 mm with the results of calculations from

[77].

Figure 30 - Comparison of temperature profiles for cross sections 1x = 17 mm,

1x = 49 mm and 1x = 80 mm with the results of calculations from [77].

73

Figure 31 - Relative humidity profiles for sections 1x = 17 mm, 1x = 49 mm and

1x = 80 mm.

Figure 32 – Longitudinal components of the flow velocity for a cross section.

74

Figure 33 – Transverse flow velocity components for a cross section.

Figure 34 – Flow temperature for cross section.

Figure 35 – Relative flow humidity for cross section.

75

5.5 Statement of the 3D Physical Problem

To approximate the obtained numerical results to the real result, it is necessary

to use three-dimensional models of the nasal cavity, since the heating and

humidification of the inhaled air strongly depends on the structure of the walls of the

nasal cavity. Therefore, computational models must include more realistic 3D

geometry descriptions in order to determine the effect of complex geometry on

various characteristics such as speed, heat and mass transfer, and relative humidity

[125].

In [79] (Hahn et al., 1993), experimental measurements of air flow in a

prototype nose were carried out using a hot wire anemometer in a large-scale physical

model of the nasal cavity, built on the basis of computed tomography of the right

nasal cavity of a healthy man. The experiments used different breathing rates

equivalent to 180 ml/s, 560 ml/s and 1100 ml/s in a real human nose, which

corresponds to calm breathing, medium inhalation and intense inhalation,

respectively. Figure 36 shows the experimental setup and the relative position of the

measurement sites on three slices that were used to verify the numerical values

obtained [125].

,0U

UvpUU
t

U 21
)(






,

where U is the velocity vector, t is the time, p is the pressure, v is the

kinematic viscosity,  is the density.

The computational model included the region from the anterior tip of the nose to

the posterior end of the turbinate. As shown in Figure 36, the nasopharynx was

dilated to fit the experimental setup [125].

The geometry of the human nasal cavity was created by aligning and processing

40 computed tomography (CT) scans of the airways of a healthy man. Using the

AutoCAD software package, intermediate geometric shapes of the nasal cavity were

created, which correspond to the average physical parameters of the human nasal

cavity. From these idealized 2-D images (Figure 37), a 3-D complex human nasal

cavity was created. The locations of the anemometers in the study area are shown in

Figure 38 [125].

As can be seen from Figure 38, on sections 1 and 2, 4 lines were located to

measure the speed at these points of the section. The computational grid of the area

under study is shown in Figure 39. The final computational grid of the nasal cavity

consisted of 6,876,463 elements (Figure 39). Comparisons of the velocity profiles

with experimental data [79] (Hahn et al., 1993) on lines 1-4 are shown in Figure 40

[125].

76

Velocity profiles were dimensioned according to the value of the local

maximum velocity. As shown in Figure 40, the predictions of the laminar model are

in good agreement with experimental data [79] (Hahn et al., 1993). The directions of

the air flow in the nasal cavity and two-dimensional contours in sections 1-3 are

shown in Figures 41 and 42. As expected, in the narrow channels of the nasal cavity

the air flow accelerated and reached a maximum value of 3.33 m/s (Figure 41). You

can also notice that due to the deep conchas of the nasal cavity, vortices arise, which

in the subsequent can have a good effect on heat and mass transfer. The two-

dimensional velocity contours presented in Figure 42 confirm the statements about

the acceleration of the air flow due to the narrowing of the turbinates and, as a

consequence, the occurrence of vortices [125].

Despite some irregularities in the flux field profiles, it can be seen that the

proposed model achieves good agreement with the experimental results [79] (Hahn et

al., 1993) under calm breathing conditions. It can also be noted that the obtained

numerical results show values much closer to the experimental data [79] (Hahn et al.,

1993) than the numerical results obtained in [86] (Li et al., 2017). However, the

obtained inaccuracies in this work can be explained by the fact that the fine features

of the nasal cavity cannot be accurately measured due to the limited resolution of

existing imaging methods. Accordingly, a model similar to the nasal cavity was

developed (Figure 36), in which the dimensions are taken from the average data of

the human nasal cavities. The model used allows a comprehensive study of a large

number of functions of the nasal cavity in relation to the structural components of the

nasal cavity and the corresponding heat and mass transfer. It should be noted that in

real conditions the walls of the nose may not be the same or equal to the alveolar

conditions, especially during exercise, and future models should refine these

assumptions [125].

77

Figure 36 - Physical geometry of the study area (all dimensions in mm).

78

Figure 37 - Digitized 2D sections of computed tomography (CT) images of the

human nasal cavity.

Figure 38 - Locations of line 1-4 on sections 1 and 2.

79

Figure 39 - Computational grid of a complex human nasal cavity.

80

81

Figure 40 - Comparison of the profiles of the horizontal velocity component on lines

1-4 with the numerical results of other authors [86] (Li et al., 2017) and experimental

data [79] (Hahn et al., 1993).

82

Figure 41 - Longitudinal components of the air flow velocity with delineation of

streamlines in the nasal cavity.

83

Figure 42 - Two-dimensional contours of the longitudinal components of the cross-

sectional velocity 1-3.

5.6 Numerical study of heating and humidification of air in the human nose

The flow of air in the human nasal cavity plays an important role in many

physiological functions of the nose, such as heating and humidifying the air flow, and

others. In this section, the proposed model is used to predict airflow and related

transport phenomena in the human nasal cavities [125].

It is assumed that the flow of heat and water vapor is released from the inside of

the nasal mucosa. Normal respiration was chosen as a reference base, and then the

effect of changes in ambient temperature was investigated. This study serves as a

basis for a better understanding of nasal transport phenomena (heat, mass), which are

the main functions of the nose [125].

,0U

UvpUU
t

U 21
)(





 ,

84

T
c

k
TU

t

T

p

2)(




 ,

CDCU
t

C 2)(




where U is the velocity vector, t is the time, p is the pressure, v is the

kinematic viscosity, T is the temperature, C is the humidity, pc is the specific heat of

the medium at constant pressure, k is the coefficient of thermal conductivity,  is

the density, D is the coefficient of molecular diffusion.

The study area was identical to the second test problem in Figure 36. It is

believed that the walls of the nasal cavity are completely saturated with water vapor

and, due to the moist mucous layer and the rich underlying vascular bed, the

temperature values are close to body temperature. The temperature value on the

stacks of the nose is taken equal to 37°C, the humidity on the walls is taken to be

100%. The environmental conditions were taken as in the work of Naftali et al. [77],

the temperature of the inhaled air is 25°C and the relative humidity is 20%. Figure 43

shows two-dimensional and three-dimensional distributions of the longitudinal

components of the flow velocity for various sections (sections 1-3) with the given

conditions. From the results obtained, it can be seen that the global behavior of the air

flow has not been changed, but, however, the maximum longitudinal velocity has

increased to 3.47 m/s (Figure 43). The increase in the maximum longitudinal velocity

was influenced by the conditions of heating and humidification on the walls of the

nasal cavity. Figure 44 shows the process of heating the inhaled air for different

sections. From the results in Figure 44, it can be seen that the inhaled air in section 3

heats up, and the air temperature is 34-37°C. The concentration of water vapor at 3

cross-section reaches a value of 0.66-0.99 (Figure 45). This structure of the nasal

cavity increases the local rate of heat and moisture transfer by narrowing the nasal

passages for air. These constrictions in the nasal cavities result in turbulence

downstream [125].

To investigate the effect of respiration under various temperature and humidity

environments, several simulations were carried out using the proposed model. To

simulate heat and mass transfer in the nasal cavity for normal inhalation in extreme

environments, three modes were chosen: at an ambient temperature of 40°C and

humidity on the walls of the nasal cavity 90%, at an ambient temperature of 5°C and

humidity on the walls of the nasal cavity 20%, at ambient temperature 5°C and

humidity on the walls of the nasal cavity 90%. The air velocity in the nasal cavity

was used the same in all cases, however the transfer process differs depending on the

conditions. Figures 46-48 show the simulation results at an ambient temperature of

5°C and a humidity on the walls of the nasal cavity of 20%. As shown in Figure 46,

at a temperature of 5°C and a humidity of 20%, the maximum speed reached 3.56

m/s. The temperature of the inhaled air per section 3 ranges from 28-37°C. However,

85

it should be noted that a temperature of 28°C occurs only in a small area, the average

temperature is 35°C. As shown in Figure 48, the inhaled air with a humidity of 20%

is humidified with water vapor from 0.62-0.99 until it reaches the nasopharynx. In

general, the distributions of water vapor are the same with the results from Figure 45

[125].

Figures 49-51 show the results of numerical simulations at an ambient

temperature of 5°C inhaled air with 90% humidity on the walls of the nasal cavity.

The flow behavior at 5°C and 90% humidity is the same as in Figure 46. The results

in Figures 50 and 47 are the same since the conditions for the temperature of the

inhaled air are the same. From the results of Figure 51 it can be seen that the

concentration of inhaled air per section 3 is in the range of 0.78-1.0. Figures 52-54

show the results of numerical simulations at an ambient temperature of 40°C inhaled

air with a nasal humidity of 90%. At an inspired air temperature of 40°C and a

humidity of 90%, the maximum flow rate reaches 3.4 m / s. The nasal cavity not only

heats the inhaled air, but in some critical cases it can also cool it. As shown in Figure

53, inhaled air at 40°C is cooled to body temperature. The concentration of inhaled

air passing through cross section 3 is 0.79-1.0, which is a near alveolar condition

[125].

From the above results, it can be concluded that the nasal cavity balances the

inhaled air with the internal conditions of the body with remarkable efficiency, and is

practically independent of the state of the surrounding air. As a comparison, the effect

of external conditions in Figures 55 and 56 shows the profiles of temperature and

concentration on lines 1-4 from section 1-2 (Figure 38) [125].

The results in Figure 55 show the difference in temperature propagation on

measurement lines 1-4. In all the results, it can be seen that the temperature of the

inhaled air tends to the conditions of the walls of the nasal cavity, that is, to a body

temperature of 37°C. As shown in Figure 56, the concentration profiles on the

measuring lines are the same under the same conditions of humidity of the inhaled

air. Like the temperature values, the concentration of water vapor also tends to the

conditions of the walls of the nasal cavity, that is, to a concentration equal to 1.0

[125].

In this work, the realistic geometry of the human nasal cavity was used, but,

however, it should be borne in mind that this geometry is not universal, since each

person has its own structure of the turbinate. However, the created three-dimensional

geometry of the human nasal cavity can be of immense value as a standard nasal

replica for testing various conditions of ambient temperature, relative humidity and

inhaled air flow rate [125].

86

Figure 43 - Two-dimensional and three-dimensional distribution of longitudinal

components of the flow velocity at an ambient temperature of 25 ° C and humidity on

the walls of the nasal cavity 20% for various sections (sections 1-3).

87

Figure 44 - Two-dimensional and three-dimensional heat distribution at an ambient

temperature of 25 ° C and humidity on the walls of the nasal cavity 20% for various

sections (sections 1-3).

88

Figure 45 - Two-dimensional and three-dimensional distributions of concentration at

an ambient temperature of 25°C and humidity on the walls of the nasal cavity 20%

for various sections (sections 1-3).

89

Figure 46 - Two-dimensional and three-dimensional distribution of longitudinal

components of the flow velocity at an ambient temperature of 5 ° C and humidity on

the walls of the nasal cavity 20% for different sections (sections 1-3).

90

Figure 47 - Two-dimensional and three-dimensional temperature distributions at an

ambient temperature of 5 ° C and humidity on the walls of the nasal cavity 20% for

various sections (sections 1-3).

91

Figure 48 - Two-dimensional and three-dimensional concentration distributions at an

ambient temperature of 5 ° C and humidity on the walls of the nasal cavity 20% for

various sections (sections 1-3).

92

Figure 49 - Two-dimensional and three-dimensional distributions of longitudinal

components of the flow velocity at an ambient temperature of 5 ° C and humidity on

the walls of the nasal cavity 90% for various sections (sections 1-3).

93

Figure 50 - Two-dimensional and three-dimensional temperature distributions at an

ambient temperature of 5°C and humidity on the walls of the nasal cavity 90% for

various sections (sections 1-3).

94

Figure 51 - Two-dimensional and three-dimensional concentration distributions at an

ambient temperature of 5 ° C and humidity on the walls of the nasal cavity 90% for

various sections (sections 1-3).

95

Figure 52 - Two-dimensional and three-dimensional distributions of longitudinal

components of the flow velocity at an ambient temperature of 40 ° C and humidity on

the walls of the nasal cavity 90% for different sections (sections 1-3).

96

Figure 53 - Two-dimensional and three-dimensional temperature distributions at an

ambient temperature of 40 ° C and humidity on the walls of the nasal cavity 90% for

various sections (sections 1-3).

97

Figure 54 - Two-dimensional and three-dimensional concentration distributions at an

ambient temperature of 40 ° C and humidity on the walls of the nasal cavity 90% for

various sections (sections 1-3).

98

99

Figure 55 - Comparison of temperature profiles on lines 1-4 under different

environmental conditions.

100

101

Figure 56 - Comparison of concentration profiles on lines 1-4 under different

environmental conditions.

5.7 Hybrid parallel numerical algorithm using dynamic load balancing

The development of technology and the increase in the volume of data in almost

all areas have given impetus to a new problem. Thus, increasing efficiency and

processing data in real time has become a key aspect for specialists. The first thing

that comes to mind is parallel programming. As you know, when a large number of

processors work simultaneously, this is called a parallel architecture. Moreover, if the

processors have different characteristics, such a system is called heterogeneous

(otherwise homogeneous). Variable memory sizes and data rates make it difficult to

102

distribute work efficiently. While with the same capabilities, this task is more

feasible.

Long-term use of parallel algorithms to date, a large selection of

implementations. But the key point is the correct distribution of the load on the

processors (balancing). Obviously, improper load balancing negatively affects

performance, thereby increasing execution time.

It follows from the above that with the help of proper load distribution,

significant results can be achieved in reducing the processing time for a single

processor. There are two types of balancing, static and dynamic. In this situation, it is

more appropriate to use dynamic load balancing, taking into account the different

capabilities of each processor.

It is possible to consider two types of balancing application: manual and

automated. One disadvantage of manually applying balancing is a big waste of time.

Whereas the big advantage of automated balancing is its simple and fast

implementation to an already existing parallel algorithm.

As previously mentioned, there are two types of balancing. Static balancing

dates back to 1972 (R. L. Graham.) and its main principle is the distribution of

balancing for tasks immediately before starting work. Sometimes the lack of accurate

information about the characteristics of processors can be a disadvantage, as it

requires comparing them with each other. As you know, compilers play an important

role in a parallel algorithm. And here you can notice another equally important

drawback - the need to match the task with the processors. This can be circumvented

by knowing the exact characteristics of the system and by providing independent

tasks. The situation is aggravated by the fact that with parallel execution it is not

possible to predict the course of communication, nor the execution itself, and the lack

of data about the task being performed. Thus, the clear superiority of using dynamic

load balancing can be emphasized. In dynamic data allocation, assigning tasks

directly on execution avoids the above problems.

5.8 Parallelization algorithm using dynamic load balancing

Using the full power of the processor due to the correct distribution of the load

leads to increased efficiency, which is the main goal of dynamic load balancing [96,

97]. It is well known that even a minimal failure in load distribution can have a

dramatic effect on the overall picture. Which again emphasizes the importance of

proper balancing [105]. Assuming that the delay due to imbalance occurs at each

iteration, one can imagine what the magnitude of the impact on efficiency due to

synchronization will be. Since the MPI subdomains very often communicate with

each other [106]. It is also known that delaying even one processor greatly affects the

overall time and efficiency. Since everyone else is waiting for the belated processor

to finish executing. At the same time, underutilized processors do not contribute

enough to increase efficiency, even if the process is executed ahead of schedule.

Different types of imbalances occur under different circumstances. For example, as

the workload changes over time, dynamic imbalances occur. Whereas static load

103

distribution leads to both constant and equal imbalance [106].

Different parameters can be used in determining the imbalance. For example,

the percentage of imbalance [107] can be expressed by the formula:

1max

max

%





N

N

t

tt
I

avg
 (21)

tmax - the maximum and tavg - average time, N - the number of parallel processes.

It should be noted here that a result of 0% corresponds to the absence of imbalance.

Whereas 100% result is the same if the parallel program was executed by one

processor. As a result, it can be said that this formula is an indicator of the percentage

of misuse of resources. As you know, in numerical simulation, the work is divided

into steps. So here is the idle time of all processors waiting for the completion of the

slowest one and can be seen as the result of this formula at one-time step. If there is

the possibility of achieving an ideal balance, then the savings in working time can be

calculated according to the It=tmax-tavg formula [107]. In addition, IT = N It can be

used to express the effect of distribution time, which is the maximum indicator of the

amount of resources spent [106].

Having many DLB schemes in science, one can say that the choice depends on

several factors: the type of grid, its partitioning, and the numerical method. In short, it

is necessary to first determine the amount of load to be transferred, then the

processor, which is directly underloaded and can accept additional volume in this

amount, and finally perform the transfer.

As a rule, this process is not so simple. For large-scale problems, DLB can be

problematic (multi-stage computations and interleaved computations with inherent

communication barriers) [108]. Even with static allocation, load imbalances can

occur during computation, such as in the direct hybrid method. Estimating various

computational costs for the initial domain decomposition is the main parameter for

estimating the efficiency of computation in the absence of load balancing. Forgetting

to take into account the waiting time and boundary conditions, one can be mistaken

when predicting the expected load. As a rule, it is calculated by comparing the

measured time from independent models. These parameters display and explain the

difference between predicted and actual load [109].

Moreover, the performance situation can deteriorate when considering a

heterogeneous system or a large-scale simulation with relatively small field

workloads [110]. Thus, as a way out of this situation, one can imagine DLB,

automatic distribution of balance in real time simulation. Moreover, the simulation

environment can be extended using DLB and hybrid parallelization. Since there are

many exceptions when using the direct hybrid method, such as changing the size of

the grid when an unassigned task changes, redistributing calculation cells. By

calculating new computational weights in all subdomains on the data obtained from

the parallel process time count and cell allocation, DLB determines new domain

divisions.

104

5.9 Estimating Computational Weights

Giving an estimate of the computational costs of various objects in the

simulation, it is possible to achieve the correct distribution of the load and its

balancing for related tasks [102]. The standard method is considered to be a uniform

distribution of tasks in each parallel subdomain. For all that, it is assumed that the

environment is homogeneous with one method and the computational cost is constant

and unchanged for each object. That is, if deal with different computational costs.

One way to avoid this problem is to define precomputed weights for each type of

problem. Again, there may be exceptions in the form of a failure in decomposition

due to the lack of some algorithmic parts or the heterogeneity of processors. One way

to solve this situation is to know the real time for each object [110]. But given the

likelihood of using different tools and significant efforts, the above method is not

suitable for scientific applications. It can be said about the need for a minimally

intrusive and reliable method of estimating computational weights to apply the

correct load distribution.

A feature of the DLB algorithm in this work is the estimation of weights due to

time measurements in each parallel subdomain. And under different types of load,

different methods can be taken into account. The time measured for each step in the

simulation adds up to the total computation time. To take into account external

factors in each subdomain i, its average value ri was determined, truncated by 25%

[106, 111]. With N parallel processes, the following is the global average

computation time:







1

0

1 N

i

ir
N

r
 (22)

where li - the local computational load and could be expressed as:

r

r
l i
i 

 (23)

Later, solving the problem using the least squares method , you can

calculate the calculated weights. As is known, in the least squares method where the

right side is determined by the load vector l, while the left matrix A represents the

current load distribution among all subdomains. From this it can be summarized that

the average workload can be represented by a linear combination of the individual

workload contributions.

22
min lAvlAc

v


 и 2
v (24)

The DGELSD procedure in LAPACK [112] given in formula (24) was used in this

work. Moreover, formula (25) gives an example of this procedure with two types of

105

load for N=4 parallel subdomains. A difference of 2.61 was obtained by comparing

the two types of loads under an overdetermined system of linear equations using the

least squares method. From which it follows that the average calculation time for the

first type of objects is 2.6 times lower than for the second type.


























































1.1

8.0

9.0

2.1

85

212

413

710

1

0

c

c
N

 lAc  solutionsquaresleast












1097.0

0420.0
c

 (25)

61.2
0

1 
c

c

5.10 Split approach

To put it simply, computations with domain decomposition on the basis of the

simulation leads to obtaining results from the assigned CCP task. Essentially,

dynamic load balancing calculates new weights for different task types to define them

as inputs. In this case, all actions occur during simulation in a one-dimensional

decomposition of the application area. However, this does not guarantee a positive

performance impact, as it is difficult to track local changes in the workload.

Therefore, one can consider a more rigid withdrawal of the imbalance. This is

necessary to assign new domain offsets for splitting to the simulation base. Naturally,

at the initial stage, it is advisable to use the above method in order to guarantee a

good start for the next steps. Further, on the basis of the received data, such as the

percentage of imbalance and weights, individual offsets are automatically

determined. The cumulative load imbalance can be represented by the formula below

as a starting point:

 Njls
j

i

ij ,...,1,1
1

0




 с 00 s (26)

Every meaning quantifies the total area load imbalance on both sides (left and right)

of the split point. Then it is necessary to make a shift oj during the simulation to

reduce the cumulative imbalance. Thus, a general load imbalance emerges as a

consequence of determining each offset separately. If to consider large-scale

problems [113], based on CFD separation, the above method can be taken as an

incremental DLB method based on diffusion [108]. According to formula (26), one

can obtain the total imbalance sj, having li as the computational load for each parallel

subdomain. As a result, the imbalance difference on both sides (left and right) of each

position is quantified. What shows with the value s2=0.45 in the example, the other

two processors have a computational load significantly lower than the first two. It

follows from this that the load must be shifted to the left from overloaded processors

to underloaded ones. As you can see, in this way, the global imbalance is minimized

106

as a result of reducing the shifting local domain's offset.

)(jj ssignd  (27)

For cell wk of section k in domain i, the load distribution can be represented as

follows:

kik wlw ~
 с i

k
k

W

w
w 

this can be represented as li load layout about the cells of the local section.

Equalizing the total imbalance sj by the crossed shares of the load on the partition

cells

)(~1 kwfdss mpenaltyj

k

j

k

j  

 for 1k с
)1(

2

1
)( jjj dkdokm

 (28)

and jj ss 0

the required displacement of each offset oj can be estimated from k, which is the

index of the sequence. For this index, the statement ≈ 0 is also true. Take

fpenalty≥1 as an additional penalty factor to avoid outliers and limit biases. This

method is shown using Equation (22) for the offset o2 of the second region at

fpenalty=1.25. According to formula (28), s2=0.45, taken as the initial cumulative

imbalance, is minimized due to a shift to a new domain by shifting by two separating

cells.

3.01.02.125.145.045.0 1

2

0

2  ss 075.015.02.125.13.02

2  s (29)

Moreover, taking into account the performance indicators that evaluate

processing speed on different computing nodes, this method can be scaled to special

calculations on different computing equipment. By comparing the local load with the

reciprocal of the relative domain workload, the relative processing performance can

be obtained. In order to quantify the relative computational speeds [114], the power

weight has the following form:

i

ij
W

W
lp 

The transfer of excess load to faster processors from slower ones and vice versa

can be done by using an additional value in the iterative process as the corresponding

computing power, according to formula (28). For instance, having an upper bound on

107

processing power as pi-1=0.8 and a lower bound as pi=1.2, the workload

redistributed from fast to slow processors is weighted as pi/pi-1=1.5. As a result, it

can be seen that this method is suitable for both types of loads (static and dynamic).

In the dynamic case, keep in mind that frequent reallocation should have a positive

effect on performance.

That is, it is necessary to catch a certain balance between these processes. In this

work, the DLB algorithm is used in serial format, which in each domain collects data

from cell workloads. The hierarchical parallel version can be extended to minimize

communication costs and memory requirements. However, in the case where only

one value per calculation cell is considered, the size of the section is quite small in

comparison, for instance with a huge amount of loading information [115, 116].

5.11 Parallel performance analysis

Figure 57 shows the results of the load obtained from the problem of air

transport in the human respiratory system. From 28 to 84 cores were used to obtain

data. The results are compared with and without balancing applications. The time

spent on calculations and communication between all parallel subdomains was taken

into account to calculate the average time spent on modeling a step. A more uniform

distribution between parallel subdomains can be observed in the overall

computational load under the condition of using DLB. With CFD, more ranks are

captured. Moreover, there is a decrease in the imbalance of I from 1% to 9%.

Whereas the usage was at 22%. Based on this indicator, even more significant

savings can be achieved by an ideal balance. And also improve the initial partition.

But due to some complex modeling complexities, such as tasks with different

workloads, can be a hindrance.

A significant advantage of the DLB scheme is the possibility of its

implementation, regardless of the problem statement (with minimal information). In

Figure 57, you can see the above distribution of the share of execution time, with

different computing cores. However, for cores with significant computational

dominance, the computational simulation load was overestimated, while for domains

with a higher proportion, it was underestimated. It can be concluded that, under the

condition of exact computational weights, the decomposition of the domain as a

result cannot be ideally optimal. This is due to differences in load compositions with

different computation times. Which gives an improvement in productivity with time

savings. The required total resources for one simulation time step under the condition

of strong scaling (from 28-84 cores) with and without load balancing are shown in

Figure 58. Moreover, the average downtime for each configuration is shown. With a

small number of computing cores, there is a slight imbalance. This fact can be

explained by the low degree of parallelism, in which a very large load falls on each

processor, with inaccurate computational weights. This is what keeps the imbalance

in check. Further, you can notice improvements in the overall performance of

parallelization when using DLB. At 28 cores, the standard simulation imbalance

starts at I%=9.6% and grows to I%=31% at 84 cores. By reducing local tasks, a 20%

108

increase in the total amount of computing resources can be achieved. And with DLB,

the imbalance is I%=4.6% for 28 cores and I%=22% for 84 cores.

It can be said that the degree of parallelism and the potential of DLB are directly

proportional. That is, it is possible to further improve the dynamic load distribution.

With a large number of cores, the worst performance of the standard simulation of

calculated weights is observed. For low degrees of parallelism, the weighted design

factor is close to the calculated prior that is being used, or the initial partition.

There is a decrease in this ratio with a large number of cores. This is due to the

decrease in solver efficiency when simulating in each parallel subdomain of the

problem with a smaller size, based on the calculations of observations of time per cell

and time step. This ratio of weights, due to its inconsistency, leads to a deterioration

in the percentage of imbalance. Moreover, on the Figures 58a and 58b imbalances are

presented in the ratio time to the nodes. These diagrams also reinforce the above

results.

Figure 57 - Distribution of the share of execution time with different computing

cores.

Figure 58 - Imbalances percentage in the ratio time to the nodes.

Furthermore, the research was done in order to find out the impact of the

number of OpenMPI cores to the execution time. Let us consider Figure 59b time for

24 cores. Couple OpenMPI cores do not make any scene from the point of dynamic

load balancing. Indicators of time worsened a little on three OpenMPI nodes.

109

Nevertheless, after 4 nodes time returned to the initial value. But the critical point

was 6 OpenMPI cores, as the line gradually went up. Next Figure 59c for 28 cores

showed stable time until 7 OpenMPI cores. After which the time increased

dramatically. Research for 40 cores first showed subtle changes in time under 7

OpenMPI cores, but then leap in time value was from 50 to more than 300 while

increasing ten nodes with OpenMPI. Uniform increase in temporal parameters was

observed 48, 56 and 80 cores.

a) for 24 cores

b) for 28 cores

110

c) 40 cores

d) for 48 cores

e) for 56 cores

111

f) for 80 cores

Figure 59 - Distribution of the execution time with different cores.

5.12 Conclusion

In fact, it is very difficult to achieve high efficiency for large-scale parallelized

tasks. Since even the slightest imbalance can lead to dramatic results in the picture of

overall performance. DLB, in turn, makes it possible to increase efficiency in

complex modeling with non-trivial domain decomposition. This possibility is

provided by the Hilbert Space Filling Curve (HFC) at a coarse level. Since it is

necessary to take into account various numerical methods, as well as various

computational costs. This scheme automatically appropriate weights to estimate the

overall workload distribution. Due to the inability of this assessment procedure catch

local changes in workload, a general approach to load balancing SFC based may not

be optimal. Therefore, the incremental diffusion DLB algorithm based on SFC

separation, which allows customize domain decomposition. Modeling air movement

in the nasal cavity demonstrates efficiency DLB schematics for various large-scale

related tasks. Detailed analysis performance showed the need for the DLB method for

direct determination of load imbalances, which, for example, are caused by individual

computational efficiency depending on the composition of the local workload, and

scalability of individual program codes. Also, an experiment with a strong scaling has

shown an improvement in performance with increasing degree parallelism when a

priori estimated computational weights are used for initial partition. Thus, studies of

the nasal cavity made it clear that their walls contribute to the heating of the air and

the occurrence of vortices. What is important in the transition of incoming air to the

alveolar state, before entering the nasopharynx. Moreover, the importance of

humidity must be taken into account. Since there is a need for heating at low ambient

temperatures. Due to the increase in the number of people with nose problems, the

relevance of this topic is increasing every year. To solve this problem, a surgical

method can be proposed that provides optimal control for the normal functioning of

the nose.

112

CONCLUSION

The paper developed a dynamic load balancing (DLB) scheme to improve the

performance efficiency of massively parallel computing. So this method with

different numerical methods and different computational costs per divided cell is

obtained using the Hilbert space filling curve (SFC) at a rough level. In order to give

a complete assessment, this scheme was applied for various tasks, such as flows

behind a backward-facing step and air flows in a complex nasal region.

Comparison of the obtained simulation results with numerical data and

experimental data of other authors was carried out, and to evaluate the parallel

numerical algorithm, a comparison of the parallel algorithm, hybrid parallel

algorithm and an algorithm using a dynamic load balancing (DLB) scheme was

carried out.

Brief conclusions based on the results of dissertation research.

 a numerical study of the efficiency of high-performance computing for

flow problems behind a backward-facing step has been carried out

 a numerical study of the efficiency of high-performance computing when

using hybrid parallel algorithms for problems of air flow in a complex nasal region

was carried out

 a hybrid parallel numerical computation was carried out using various

methods of domain decomposition

 a hybrid parallel numerical computation was carried out using the

dynamic load balancing method

 an estimate is given of the efficiency of hybrid parallel numerical

computation using various methods of domain decomposition

 an estimate of the efficiency of the hybrid parallel numerical algorithm

using the dynamic load balancing method is given

 Comparison of the obtained simulation results with numerical data and

experimental data of other authors was carried out.

 the analysis of the obtained results of hybrid parallel numerical

computation and hybrid parallel numerical computation was carried out using the

method of dynamic load balancing

It should be noted that the results obtained gave rise to new problems. Since the

dynamic load balancing (DLB) scheme does not require any modification, in the

future it will be possible to apply this approach to simulate various three-dimensional

physical and technical problems. In the future, it is planned to consider these tasks.

The results obtained can be used to solve a number of applied problems.

For numerical calculations, adequate numerical methods and algorithms are used

in the work, and the results obtained are compared with the calculated and

experimental data of other authors. Thus, the results of this work can find wide

application in the field of distributed computing and information technology.

Evaluation of the completeness of the solution of the assigned tasks. In the

work, a dynamic load balancing (DLB) scheme has been built, which allows to

increase the efficiency of the complex, on the basis of which mathematical modeling

113

was performed, and the numerical calculation of three-dimensional various physical

and technical problems, this allows us to conclude that the goal of the work has been

achieved and the research tasks have been completely solved.

Development of recommendations and baseline data for the specific use of

the results. The results obtained in this work are recommended to be used for the

implementation of projects related to solving problems in the field of distributed

computing and information technology.

Assessment of the scientific level of the work performed in comparison with

the best achievements in the field. The thesis contains new science-based results

that solve an important scientific problem, namely, the problem of high performance

computing for various problems using a dynamic load balancing (DLB) scheme.

114

REFERENCES

1 Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, and S.

Tuecke. Wide-Area Implementation of the Message Passing Interface // Parallel

Computing. – 1998. - 24(12-13). – P.1735–1749.

2 MPI Forum. MPI: A Message-Passing Interface standard. Version 3.0, 2012.

3 Sohankar, A., Norberg, C. & Davidson, L. Simulation of three-dimensional

flow around a square cylinder at moderate Reynolds numbers // Phys. Fluids. - 11,

1999. –P.288–306.

4 Saha, A. K., Biswas, G. & Muralidhar, K. Three-dimensional study of flow

past a square cylinder at low Reynolds number // Intl J. Heat Fluid Flow. – 2003. -

24. – P. 54–66.

5 Robichaux, J., Balachandar, S. & Vanka, S. P. Three-dimensional Floquet

instability of the wake of square cylinder // Phys. Fluids. – 1999. - 11. – P.560–578.

6 Lighthill M. J. Lаminаr boundery lаyers. Chаp. II. – London: Oxford

University Press, 1963. – P. 355.

7 Dаvis R. W., Moor E. F. А numericаl study of vortex shedding from

rectаngles // J. Fluid Mech.– 1982.– 116. - P. 475–506.

8 Performance analysis of MPI collective operations [Text] / Jelena Pjesivac-

Grbovic, Thara Angskun, George Bosilca [et al.] // Cluster Computing. — 2007. —

Vol. 10, no. 2. — P. 127–143.

9 Torsten Hoefler and Dmitry Moor Energy, Memory, and Runtime Tradeoffs

for Implementing Collective Communication Operations. - ETH Z¨urich, 2014.

10 Perrone Michael, Fast Scalable Reverse Time Migration Seismic Imaging on

Blue Gene/P. / Michael Perrone, Lurng-Kuo Liu, Ligang Lu, K Magerlein,

Changhoan Kim, I. Fedulova, A. Semenikhin, IBM TJ Watson Research Cente, NY,

IBM Russia Systems and Technology Lab. - Moscow, 2011.

11 Issakhov A., Shaibekova A. Mathematical modelling of flow around

obstacles with complex geometric configuration in a viscous incompressible medium

// International Journal of Mathematics and Physics. - 2016. - Volume 7. Number 1. .

- P. 40-45.

12 Anderson D., Tannehill J., and Pletcher R. Computаtionаl fluid dynаmics

and heat transfer. - New York: McGraw-Hill Book Company, 1984.

13 Hirsch C. Numerical computation of Internal and External flows. - New

York: John Wiley&Sons, 1988. - volime 1,2.

14 Hockney W. The communication challenge for mpp: Intel paragon and

meiko cs-2 // Parallel computing. – 1994. - vol. 20 no. 3. - P. 389–398.

15 Chung T.J. Computаtionаl fluid dynаmics. – 2002. - P.1034.

16 Amdahls and Gustafson laws. http://www.drdobbs.com/parallel/amdahls-

law-vs-gustafson-barsis-law/240162980?pgno=2

17 Alexandrov A., Ionescu M. F., Schauser K. E., and Scheiman C. LogGP:

Incorporating Long Messages into the LogP Model // One Step Closer Towards a

Realistic Model for Parallel Computation. In Proceedings of the Seventh Annual

http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980?pgno=2
http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980?pgno=2

115

ACM Symposium on Parallel Algorithms and Architectures, SPAA ’95. – New York,

NY, USA 1995. – P. 95–105.

18 Korthikanti A. and Agha G. Towards optimizing energy costs of algorithms

for shared memory architectures // InF.M.aufderHeideandC.A.Phillips,editors,SPAA,

- 2010. - P.157–165.

19 Korthikanti V. A. and Agha G. Energy-performance trade-off analysis of

parallel algorithms for shared memory architectures. In Sustainable Computing:

Informatics and Systems. - In Press. - 2011.

20 Kielmann T., Hofman R. F. H., Bal H. E., Plaat A., and Bhoedjang R. A. F.

MagPIe // MPI’s Collective Communication Operations for Clustered Wide Area

Systems. In Proceedings of the Seventh ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’99. - New York: NY, USA, 1999.

ACM. - P. 131–140.

21 Brooks E. D. III. The butterfly barrier // Int. J. Parallel Program. – Oct. 1986.

- 15(4) - P.295–307.

22 Thakur R., Rabenseifner R., and Gropp W. Optimization of Collective

communication operations in MPICH // International Journal of High Performance

Computing Applications. - 2005. - 19. – P.49–66.

23 Bruck J., Ho C.-T., Kipnis S., Upfal E., and Weathersby D. Efficient

algorithms for all-to-all communications in multiport message-passing systems. IEEE

Transactions on Parallel and Distributed Systems, - 1997. – 8 - P.1143 – 1156.

24 Hoefler T., Lichei A., and Rehm W. Low-Overhead LogGP Parameter

Assessment for Modern Interconnection Networks. In Proceedings of the 21st IEEE

International Parallel & Distributed Processing Symposium, PMEO’07 Workshop.

IEEE Computer Society, Mar. 2007.

25 Kim E. J., Link G., Yum K. H., Vijaykrishnan N., Kandemir M., Irwin M.,

and Das C. A holistic approach to designing energy-efficient cluster interconnects.

Computers, IEEE Transactions on. - Jun 2005. - 54(6). – P.660–671.

26 Madhavan S. Transition to three-dimensional models for flow past a

confined square cylinder. PhD thesis: 2011. - University of Alberta, Edmonton, AB,

Canada – P.68.

27 Thakur R., Rabenseifner R., and Gropp W. Optimization of Collective

communication operations in MPICH. International Journal of High Performance

Computing Applications, - 2005 – 19 – P.49–66.

28 Traff J. L. and Ripke A. Optimal broadcast for fully connected networks. In

Proceedings of the First International Conference on High Performance Computing

and Communications // HPCC’05. – Berlin, Heidelberg, 2005. Springer-Verlag. – P.

45–56.

29 Vadhiyar S. S., Fagg G. E., and Dongarra J. Automatically tuned collective

communications // In Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing, SC ’00, Washington, DC, USA. – 2000. - IEEE Computer Society.

30 Wagner A., Buntinas D., Panda D., and Brightwell R. Application-bypass

reduction for large-scale clusters // In Cluster Computing. – Dec, 2003. -

Proceedings. 2003 IEEE International Conference. – P. 404–411.

116

31 Watts J. and Van De Geijn R. A pipelined broadcast for multidimensional

meshes // Parallel Processing Letters – 1995. - 5(02). – P.281–292.

32 Yu W., Panda D. K., and Buntinas D. Scalable, High-performance NIC-

based All-to-all Broadcast over Myrinet/GM // In Proceedings of the 2004 IEEE

International Conference on Cluster Computing - Washington, DC, USA, 2004. IEEE

Computer Society.- P. 125–134.

33 Sur S., Bondhugula U. K. R., Mamidala A., Jin H. W., and Panda D. K.

High performance, based all-to-all broadcast for infiniband clusters // In Proceedings

of the 12th International Conference on High Performance Computing, HiPC’05. -

Berlin, Heidelberg, 2005.Springer-Verlag. - P. 148–157.

34 Thakur R. and Gropp W. Improving the performance of collective

operations in MPICH // In Recent Advances in Parallel Virtual Machine and Message

Passing Interface. - Springer Verlag, 2003. - Number 2840 in LNCS, Springer Verlag

(2003) 257267 10th European PVM/MPI Users Group Meeting. – P. 257–267.

35 Vadhiyar S. S., Fagg G. E., and Dongarra J. Automatically tuned collective

communications // In Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing, SC ’00. - Washington, DC, USA, 2000. IEEE Computer Society.

36 Wagner A., Buntinas D., Panda D., and Brightwell R. Application-bypass

reduction for large-scale clusters. In Cluster Computing, 2003 // Proceedings. 2003

IEEE International Conference. - Dec 2003. – P. 404–411.

37 Abbott D.E., Kline S.J. Experimental investigations of subsonic turbulent

flow over single and double backward-facing steps // J. Basic Engng. – 1962. - V.84.

– P. 317.

38 Sebanr A. Heat transfer to the turbulent separated flows of air downstream

of a step in the surface of a plate // J. Heat Transfer. – 1964. – V.86. – P. 259.

39 Goldsteinr J., Eriksenv L., Olsonr M., Eckerte R.G. Laminar separation,

reattachment and transition of flow over a downstream-facing step // J. Basic Engng.

– 1970. – V.92. – P. 732.

40 Durst F., Whitelawj H. Aerodynamic properties of separated gas flows:

existing measurements techniques and new optical geometry for the laser-Doppler

anemometer // Prog. Heat Mass Transfer. – 1971. – V.4. – P. 311.

41 Gosmana D., Punw M. Lecture notes for course entitled: ‘Calculation of

recirculating flow’ // Heat Transfer Rep. – 1974. – V.74. – P. 2.

42 Kumara, Yajnikk S. Internal separated flows at large Reynolds number // J.

Fluid Mech. – 1980. – V.97. – P. 27.

43 Chiang T.P., Tony W.H., Sheu, Fang C.C. Numerical investigation of

vortical evolution in backward-facing step expansion flow // Appl. Math. – 1999. –

V.23. – P. 915-932.

44 Fletcher C.A.J. Computational techniques for fluid dynamics 2 // Springer-

Verlag New York. – 1988. – V.1. – P. 387.

45 Lin J.T., Armaly B.F., Chen T.S. Mixed convection in buoyancy-assisting,

vertical backward-facing step flows. International Journal of Heat and Mass Transfer.

- October 1990. - Volume 33, Issue 10. – P. 2121-2132.

117

46 Armaly B. F. and Durst F, Reattachment length and recirculation regions

downstream of two dimensional single backward facing step // In Momentum and

Hear Transfer Process in Recirculating Flows, ASME HTD. - ASME, New York

(1980). - Vol. 13. - P. l-7.

47 Eaton J. K. and Johnson J. P. A review of research on subsonic turbulent

flow reattachment // AfAA J. – 1981. – 19. – P.1093- 1100.

48 Simpson R. L. A review of some phenomena in turbulent flow separation, //

J. Fluid Engng. – 1981. – 103. – P.520-530.

49 Aung W. An experimental study of laminar heat transfer downstream of

backsteps // J. Heat Transfer. – 1983. – 105. - P.823-829.

50 Aung W. Separated forced convection // Proc. ASMEIJSME Thermal Enana

Joint Con. - ASME. New York (1983). - Vol. 2. DD. – P.499-515.

51 Aung W., Baron A. and Tsou F. K. Wall independency and effect of initial

shear-layer thickness in separated flow and heat transfer // Int. J. Hear Muss Transfer.

– 1985. – 28. – P.1757-1771.

52 Aung W. and Worku G. Theory of fully developed. combined convection

including flow reversal // J. Hear Transfer. – 1986. – 108. – P.485-488.

53 Sparrow E. M., Chrysler G. M. and Azevedo L. F. Observed flow reversals

and measured-predicted Nusselt numbers for natural convection in a one-sided heated

vertical channel // J. Heat Transfer. – 1984. – 106. – P.325-332.

54 Sparrow E. M., Kang S. S. and Chuck W. Relation between the points of

flow reattachment and maximum heat transfer for regions of flow separation // Int. J.

Hear Mass Transfer. – 1987. – 30. – P.1237-1246.

55 Sparrow E. M. and Chuck W. PC solutions for heat transfer and fluid flow

downstream of an abrupt, asymmetric enlargement in a channel // Numer. Hear

Transfer. – 1987. – 12. – P. 1940.

56 Chung T.J. Computational fluid dynamics. - 2002. - P.1034.

57 Issakhov A., Mathematical modeling of the discharged heat water effect on

the aquatic environment from thermal power plant // International Journal of

Nonlinear Science and Numerical Simulation, – 2015. - 16(5). - P. 229–238,

doi:10.1515/ijnsns-2015-0047.

58 Issakhov A., Mathematical modeling of the discharged heat water effect on

the aquatic environment from thermal power plant under various operational

capacities // Applied Mathematical Modelling, –2016. - Volume 40, Issue 2. - P.

1082–1096 http://dx.doi.org/10.1016/j.apm.2015.06.024.

59 Issakhov A. Large eddy simulation of turbulent mixing by using 3D

decomposition method // J. Phys.: Conf. Ser. – 2011. - 318(4). - P. 1282-1288,

doi:10.1088/1742-6596/318/4/042051.

60 Chorin A.J. Numerical solution of the Navier-Stokes equations // Math.

Comp. –1968. – 22. - P. 745-762.

61 Karniadakis G. E., Kirby II R. M. Parallel Scientific Computing in C++ and

MPI: A Seamless Approach to Parallel Algorithms and their Implementation. -

Cambridge University Press, 2000. - P. 630.

118

62 Ngo I., Byon C., Effects of heater location and heater size on the natural

convection heat transfer in a square cavity using finite element method. - J. Mech.

Sci. Technol, 2015. - 29 (7) – P.2995.

63 Oztop H. F., Abu-Nada E. Numerical study of natural convection in partially

heated rectangular enclosures filled with nanofluids // Int. J. Heat. Fluid Fl. – 2008. -

29 (5). – P.1326 - 1336.

64 Cole, P. Some aspects of temperature, moisture and heat relationships in the

upper respiratory tract // J. Laryngol. Otol. – 1953. – 67. – P.449–456.

65 Ingelstedt, S. Studies on conditioning of air in the respiratory tract // Acta

Oto-Laryngol. - Suppl. – 1956. – 131. – P.1–80.

66 Webb, P. Air temperatures in respiratory tracts of resting subjects. J. Appl.

Physiol. – 1951. - 4. - P.378–382.

67 Hanna, L. M., and P. W. Scherer. Measurement of local mass transfer

coefficients in a cast model of the human upper respiratory tract // J. Biomech. Eng. .

– 1951. – 108. – P.12–18.

68 McFadden, E. R. Respiratory heat and water exchange: Physiological and

clinical implications // J. Appl. Physiol. – 1983. – 54. – P.331–336.

69 Doorly, D., Taylor, D., Schroter, R., Mechanics of airflow in the human

nasal airways // Respir. Physiol. Neurobiol. – 2008 – 163. – P. 100–110.

70 Girardin, M., E. Bilgen, and P. Arbour. Experimental study of velocity fields

in a human nasal fossa by laser anemometry // Ann. Otol. Rhinol. Laryngol. – 1983. –

92. – P.231–236.

71 Anderson, N.J., Cassidy, P.E., Janssen, L.L., Dengel, D.R. Peak inspiratory

flows of adults exercising at light, moderate and heavy work loads // J.-Int. Soc.

Respir. Prot. – 2006. – 23. – P. 53.

72 Rennie, C.E., Gouder, K.A., Taylor, D.J., Tolley, N.S., Schroter, R.C.,

Doorly, D.J. Nasal inspiratory flow: at rest and sniffing // Int. Forum Allergy Rhinol.

– 2011. – 1. – P. 128– 135.

73 Doorly, D., Taylor, D., Franke, P., Schroter, R., Experimental investigation

of nasal airflow // Proc. Inst. Mech. Eng. Part H: J. Eng. Med. – 2008. – 222. – P.

439–453.

74 Croce, C., Fodil, R., Durand, M., Sbirlea-Apiou, G., Caillibotte, G., Papon,

J.-F., Blondeau, J.-R., Coste, A., Isabey, D., Louis, B. In vitro experiments and

numerical simulations of airflow in realistic nasal airway geometry // Ann. Biomed.

Eng. – 2006 – 34. – P.997–1007.

75 Keyhani, K., Scherer, P., Mozell, M. Numerical simulation of airflow in the

human nasal cavity // J. Biomech. – 1995. - Eng. 117. – P. 429–441.

76 Wang, T., Chen, D., Wang, P., Chen, J., Deng, J. Investigation on the nasal

airflow characteristics of anterior nasal cavity stenosis. Braz // J. Med. Biol. Res. –

2016. – P.49.

77 Naftali, S., Schroter R. C., Shiner R., J., Elad D., Transport Phenomena in

the Human Nasal Cavity: A Computational Model // Annals of Biomedical

Engineering. – 1998. – 26. – P. 831-839.

119

78 Naftali S, Rosenfeld M, Wolf M, Elad D The air-conditioning capacity of

the human nose // Ann Biomed Eng. – 2005. – 33. – P.545–553.

79 Hahn, I., Scherer, P.W., Mozell, M.M. Velocity profiles measured for

airflow through a large-scale model of the human nasal cavity // J. Appl. Physiol. -

2005 – 75. – P. 2273–2287.

80 Mylavarapu, G., Murugappan, S., Mihaescu, M., Kalra, M., Khosla, S.,

Gutmark, E. Validation of computational fluid dynamics methodology used for

human upper airway flow simulations // J. Biomech. – 2009. – 42. – P. 1553–1559.

81 Weinhold, I., Mlynski, G. Numerical simulation of airflow in the human

nose // Eur. Arch. Oto-Rhino-Laryngol. Head Neck – 2004. – 261. – P. 452–455.

82 Ball, C., Uddin, M., Pollard, A. High resolution turbulence modelling of

airflow in an idealised human extra-thoracic airway // Comput. Fluids. – 2008. – 37.

– P.943–964.

83 Chen, J., Gutmark, E. Numerical investigation of airflow in an idealized

human extra-thoracic airway: a comparison study // Biomech. Model. Mechanobiol. –

2014. – 13. – P. 205–214.

84 Zhang, Z., Kleinstreuer, C. Laminar-to-turbulent fluid–nanoparticle

dynamics simulations: model comparisons and nanoparticle-deposition applications //

Int. J. Numer. Methods Biomed. – 2011. - Eng. 27. – P. 1930–1950.

85 Doorly, D., Taylor, D., Gambaruto, A., Schroter, R., Tolley, N. Nasal

architecture: form and flow // Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. -

2008b – 366. – P.3225–3246.

86 Li, C., Jiang, J., Dong, H., Zhao, K. Computational modeling and validation

of human nasal airflow under various breathing conditions // Journal of

Biomechanics. – 2017. – 64. – P. 59-68.

87 Lin, C.-L., Tawhai, M.H., McLennan, G., Hoffman, E.A. Characteristics of

the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic

airways // Respir. Physiol. Neurobiol. – 2007. – 157. – P.295–309.

88 Varghese, S.S., Frankel, S.H., Fischer, P.F. Direct numerical simulation of

stenotic flows. Part 1. Steady flow // J. Fluid Mech. – 2007. – 582. – P. 253–280.

89 Wang, Y., Elghobashi, S. On locating the obstruction in the upper airway via

numerical simulation // Respir. Physiol. Neurobiol. – 2014. – 193. – P. 1–10.

90 Lindemann J, Leiacker R, Rettinger G, Keck T Nasal mucosal temperature

during respiration // Clin Otolaryngol. -2002. – 27. – P.135–139.

91 Lindemann J, Kühnemann S, Stehmer V, Leiacker R, Rettinger G, Keck T

Temperature and humidity profile of the anterior nasal airways of patients with nasal

septal perforation // Rhinology. -2001. – 39. – P.202–206.

92 Pérez-Mota, J., Solorio-Ordaz, F., & Cervantes-de Gortari, J.. Flow and air

conditioning simulations of computer turbinectomized nose models // Medical &

Biological Engineering & Computing – 2018. - 56 (10). – P. 1899-1910.

93 Garcia G.J.M., Schroeter J.D., Kimbell J.S. Olfactory deposition of inhaled

nanoparticles in humans, Inhal. Toxicol. -2015. - 27 – P.394–403.

120

94 Na Y., Chung K.S., Chung S.K., Kim S.K. Effects of single-sided inferior

turbinectomy on nasal function and airflow characteristics // Respir. Physiol.

Neurobiol. -2012. -180 – P. 289–297.

95 Vinchurkar S., De Backer L., Vos W., Van Holsbeke C., De Backer J., De

Backer W. A case series on lung deposition analysis of inhaled medication using

functional imaging based computational fluid dynamics in asthmatic patients: effect

of upper airway morphology and comparison with in vivo data // Inhal. Toxicol. –

2012. - 24. – P.81–88.

96 Teresco J. D., Devine K. D., Flaherty J. E. Partitioning and Dynamic Load

Balancing for the Numerical Solution of Partial Differential Equations, ser. // Lecture

Notes in Computational Science and Engineering. – 2006. - vol. 51. – P. 55–88. doi:

10.1007/3-540-31619-1_2

97 Hendrickson B., Devine K. Dynamic load balancing in computational

mechanics, Comp. Methods in Appl. Mech. Eng. - Apr. 2000. - vol. 184, no. 2–4. - P.

485–500,. doi: 10.1016/S0045-7825(99)00241-8

98 Pinar A., Aykanat C. Fast optimal load balancing algorithms for 1D

partitioning, J. Parallel Distrib. Comput., Aug. 2004. - vol. 64, no. 8, - P. 974–996.

doi: 10.1016/j.jpdc.2004.05.003

99 Pilkington J. R., Baden S. B. Dynamic partitioning of non-uniform

structured workloads with spacefilling curves, IEEE Trans. Parallel Distrib. Syst. -

Mar. 1996 - vol. 7. - no. 3, pp. 288–300. doi:10.1109/71.491582

100 Lieber M., Nagel W. E. Scalable high-quality 1D partitioning // HPCS -

Jul. 2014. - P. 112–119. doi: 10.1109/HPCSim.2014.6903676

101 Pinar A., Kartal Tabak E., Aykanat C. One-dimensional partitioning for

heterogeneous systems: Theory and practice // J. Parallel Distrib. Comput. - Nov.

2008. - vol. 68. - P. 1473–1486. doi: 10.1016/j.jpdc.2008.07.005

102 Menon H., Jain N., Zheng G., Kale L. Automated load balancing

invocation based on application characteristics // IEEE Cluster Comput. – 2012. - P.

373–381. doi: 10.1109/CLUSTER.2012.61

103 Issakhov A. Mathematical modeling of the discharged heat water effect on

the aquatic environment from thermal power plant // International Journal of

Nonlinear Science and Numerical Simulation, – 2015 - 16(5) - P. 229–238,

doi:10.1515/ijnsns-2015-0047.

104 Issakhov A. Mathematical modeling of the discharged heat water effect on

the aquatic environment from thermal power plant under various operational

capacities // Applied Mathematical Modelling, –2016 - Volume 40, Issue 2. - P.

1082–1096 http://dx.doi.org/10.1016/j.apm.2015.06.024.

105 Ashby S. The Opportunities and Challenges of Exascale Computing.

ASCAC subcommittee // US - DOE Report. - 2010.

106 Böhme D. Characterizing Load and Communication Imbalance in Parallel

Applications // ser. IAS.Forschungszentrum. - Jülich, 2014. - vol. 23. doi:

10.1109/IPDPSW.2012.321

121

107 DeRose L., Homer B., Johnson D. Detecting Application Load Imbalance

on High End Massively Parallel Systems, Parallel Processing. - Aug. 2007. - pp. 150–

159. doi: 10.1007/978-3-540-74466-5_17

108 Watts J., Taylor S. A practical approach to dynamic load balancing // IEEE

Trans. Parallel Distrib.Syst. – 1998 - vol. 9, no. 3. - P. 235–248. doi:

10.1109/71.674316.

109 Jetley P., Gioachin F., Mendes C., Kalé L., Quinn T., Massively parallel

cosmological simulations with ChaNGa // IEEE IPDPS. - Apr. 2008. - P. 1–12. doi:

10.1109/IPDPS.2008.4536319.

110 Phillips J. C., Zheng G., Kumar S., Kalé L. V. NAMD: Biomolecular

simulation on thousands of processors // ACM/IEEE Supercomputing. – 2002. - P.

1–18. doi: 10.1109/SC.2002.10019.

111 Petrini F., Kerbyson D. J., Pakin S. The Case of the Missing

Supercomputer Performance: Achieving Optimal Performance on the 8,192

Processors of ASCI Q // ACM/IEEE Supercomputing. - Nov. 2003. doi:

10.1145/1048935.1050204.

112 Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du

Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D. LAPACK

Users’ Guide, 3rd ed. - SIAM, 1999.- ISBN 0-89871-447-8.

113 Lieber M., Gößner K., Nagel W. E. The potential of diffusive load

balancing at large scale // EuroMPI. – 2016. - P. 154–157. doi:

10.1145/2966884.2966887.

114 Zhang X., Yan Y. Modeling and characterizing parallel computing

performance on heterogeneous networks of workstations // Parallel Distrib. Comput. -

Oct. 1995 - P. 25–34. doi:10.1109/SPDP.1995.530661.

115 Zheng G., Bhatelé A., Meneses E., Kalé L. V. Periodic hierarchical load

balancing for large supercomputers // Int. J. High Perform. Comput. Appl. - Nov.

2011. - vol. 25, no. 4. - P. 371–385. doi:10.1177/1094342010394383

116 Исахов А.А., Абылкасымова А.Б., Мансурова М.Е. Применение

метода балансировки нагрузки на высокопараллельных вычислительных

кластерных системах // Вестник КБТУ. – 2021, – № 1 (18) – С.117-125

117 x Исахов А.А., Абылкасымова А. Исследование движения воздуха в

респираторной системе человека методами математического моделирования //

Известия КГТУ им. И. Раззакова. - 2016, – № 3 (39) – С.116 – 121.

118 Исахов А.А., Абылкасымова А. Свойства переноса воздуха в

респираторной системе человека с помощью численного моделирования //

Вестник КазНУ. - 2017. – № 1 (93) – С.105 – 118.

119 Исахов А.А., Абылкасымова А., Сакыпбекова М. Применение

параллельных вычислительных технологий для моделирования процесса

отрыва течения за обратным уступом в канале с учетом сил плавучести //

Вестник КазНУ. - 2018. – № 1 (97) – С.143 – 158.

120 Issakhov A., Abylkassymova A. Numerical study of identification of the

main characteristics of air transport in the human nasal cavity // International journal

of biology and biomedical engineering. – 2017. - Volume 11. - P. 80-87 (Scopus).

122

121 Исахов А.А., Абылкасымова А. Применения параллельных

вычислительных технологий для численного моделирования переноса воздуха

в респираторной системе человека // Вестник КазНПУ – 2017. – № 1(57). –

С.219-229.

122 Issakhov A.A., Abylkassymova A., M. Sakypbekova Applications of

parallel computing technologies for modeling of the wind flow around the

architectural obstacles with the vertical buoyancy forces // Известие НАН РК – 2018

Серия физ.-мат. – № 4(320) – С.48-57.

123 Issakhov A.A., Abylkassymova A., M. Sakypbekova Applications of

parallel computing technologies for modeling the mixed convection in backward-

facing step flows with the vertical buoyancy forces // International Journal of

Mathematics and Physics. – 2017. - Volume 8. Number 2 (4). - P. 43-50.

124 Issakhov A.A., Abylkassymova A., Application of Parallel Computing

Technologies for Numerical Simulation of Air Transport in the Human Nasal Cavity.

Innovative Computing, Optimization and Its Applications // Studies in Computational

Intelligence. - vol 741. Springer, Cham. – P.131-149 In: Zelinka I., Vasant P., Duy

V., Dao T. (eds).

125 Issakhov A.A., Zhandaulet Y., Abylkassymova A., Issakhov As. A

numerical simulation of air flow in the human respiratory system for various

environmental conditions // Theoretical Biology and Medical Modelling . - 2021. –

18. - Article number: 2, doi.org/10.1186/s12976-020-00133-8 (Impact Factor: 1.68)

126 Issakhov A.A., Mardieyeva A., Zhandaulet Y., Abylkassymova A.

Numerical study of air flow in the human respiratory system with rhinitis // Case

Studies Thermal Engineering. Available online. - 19 May 2021. - 101079,

10.1016/j.csite.2021.101079.

