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Designations and abbreviations 

 

In this dissertation the following terms with appropriate definitions are used: 

 

∇ – the operator of nabla, 

Δ – Laplacian vector operator, 

t – time, 

ν – coefficient of kinematic viscosity, m²/s 

ρ – density, 

p – pressure, kg/m3 

u ⃗ = (u, v) – the components of the flow velocity, 

f ⃗ – vector field of the mass forces. 

δ(i, j) – is the Kronecker delta 

Re - Reynolds number 

P – number of processors 

Ep – efficiency of parallel algorithm 

Sp – speed-up of parallel algorithm 

Tcomm – time of execution of communication operation 
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INTRODUCTION 

 

Information technology is gaining popularity day by day, as today it is the era of 

high-performance parallel computing systems. For this reason, the issue of 

accelerating and processing and analyzing large amounts of data is acute. There are a 

number of ways to deal with this issue, such as multi-core machines, supercomputers, 

or grid systems. Also, parallel algorithms are used for processing, modeling and 

visualization of both initial and transformed data. Depending on the technologies 

used in the construction of parallel programs, the architecture of computing systems 

also depends (MPI libraries for message passing [1, 2], high-level parallel 

programming systems (Unified Parallel C, ParJava, DVM, T-system, Cray Chapel, 

IBM X10) support for multithreading and development of programs for specialized 

systems (NVIDIA CUDA, OpenCL, OpenACC, OpenMP)). 

As it knows, the use of parallel technologies can be due to such reasons as 

modeling real physical problems described by systems of differential equations in 

partial derivatives. For example, flows of a viscous incompressible medium (one of 

the important problems of mechanics). 

Moreover, in real life and in many sciences (medicine, architecture, industry), 

the problems of the interaction of air flow with various obstacles are very popular. 

This relevance of the aerodynamic stability of structures appeared after some 

unfortunate incidents [3-7]. 

Scientists, who have made a significant contribution to the theory and practice 

of computer systems and parallel computing technologies, are: J.L. Traf, T. Sterling, 

M. Snir, R. Rabenseifner, S. Matsuoka, T. Hoeler, W. Gropp, S. Cray, J. Dongarra, P. 

Balaji, N.N. Yanenko, Yu.I. Shokin, B.N. Chetverushkin, V.G. Khoroshevsky, Ya.A. 

Khetagurov, A.N. Tomilin, V.B. Smolov, G.G. Ryabov, G.E. Pukhov, D.V. 

Puzankov, I.V. Prangishvili, D.A. Pospelov, Yu.I. Mitropolsky, V.A. Mellnicks, G.I. 

Marchuk, I.I. Levin, V.K. Levin, S.A. Lebedev, A.O. Latsis, V.G. Lazarev, L.N. 

Korolev, V.V. Korneev, Yu.G. Kosarev, I.A. Kalyayev, A.V. Kalyaev, M.B. 

Ignatiev, V.P. Ivannikov, A.V. Zabrodin, E.V. Evreinov, V.F. Evdokimov, V.M. 

Glushkov,  V.V. Voevodin, V.V. VaSyliev, V.S. Burtsev, V.B. Betelin, E.P. 

Balashov, S.M. Abramov and etc.  

In [8], a parallel algorithm for modeling geological environments is presented. A 

distinctive feature of this algorithm is the use of several parallel programming 

technologies, such as MPI, OpenMP, CUDA. This work is aimed at studying the 

simulation of acoustic wave propagation in an inhomogeneous medium for high-

performance systems, which is an important aspect in the field of seismic exploration. 

Whereas in [9] a number of studies of the execution time of various types of 

implementation of collective algorithms were carried out. Moreover, the dependence 

of energy, memory and execution time of certain algorithms was revealed. 

Dalle, in [10-12] papers talk about a natural study of the effectiveness of the 

parallel seismic migration algorithm in reverse time for Blue Gene/P. That is, a 

question is raised that arises when using the program on a different number of 

processors. 
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As is known, the use of parallel technologies can be due to such reasons as 

modeling real physical problems described by systems of differential equations in 

partial derivatives. For instance, the flow of a viscous incompressible medium is one 

of the important problems of mechanics. In fact, it is very difficult to achieve high 

efficiency for large-scale parallelized tasks. Since even the slightest imbalance can 

lead to undesirable results in overall performance. Dynamic load balancing (DLB), in 

turn, improves the efficiency of complex modeling with non-trivial domain 

decomposition. This possibility is provided by the Hilbert Space Filling Curve (SFC) 

at a coarse level. Since it is necessary to take into account various numerical 

methods, as well as various computational costs this schema automatically assigns 

weights to estimate the overall workload distribution. Due to the inability of this 

evaluation procedure to capture local workload changes, the overall SFC-based load 

balancing approach may not be optimal. Therefore, the DLB incremental diffusion 

algorithm is based on SFC separation, which allows to customize the domain 

decomposition. Simulations for various physical processes in complex domains 

demonstrate the effectiveness of DLB schemes for various large-scale related 

problems. A detailed performance analysis showed the need to use the DLB method 

to directly determine load imbalances, which, for example, are caused by individual 

computational efficiency depending on the composition of the local workload, 

scalability of individual program codes. In addition, the strong scaling experiment 

showed performance improvement with increasing degree of parallelism when a 

priori estimated computational weights are used for the initial split. 

Objectives of the study. Improving the efficiency of complex modeling of 

various physical and technical problems has been one of the hot topics for several 

years now. But in this paper, the above goal is pursued, but with the use of a dynamic 

load balancing (DLB) scheme. A method with minimal intervention is proposed, 

regardless of the problem statement. Furthermore, computational weights are 

estimated based on performance measurements during the simulation. The approach 

automatically determines the appropriate weights that can be used to estimate the 

overall distribution of the workload. 

Study object. The object of the study is high-performance computing using the 

method of dynamic load balancing for various physical tasks. 

Research methods. The methods proposed in the thesis are a new tool in the 

study of the problems of load distribution on various processors. The efficiency of 

complex modeling with significant domain decompositions are the main point of 

increase for DLB.  

For numerical calculations, parallel numerical algorithms are used in the work, 

comparison of calculated results and experimental data of other well-known authors 

have been performed. 

Theoretical and practical value. To solve important applied problems related 

to numerical simulation on high-performance cluster machines, the conclusions and 

results of this work can be used. 

The developed schemes and numerical algorithms make a direct contribution to 

the development of science in distributed computing and in the field of information 
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technology in the country. The practical value of the work lies in the fact that the 

developed dynamic load balancing (DLB) scheme on high-performance systems of 

great practical importance allows not only to obtain a significantly "fast" result 

compared to sequential calculations, but also expands the possibilities of 

implementing labor-intensive methods and algorithms. for solving important applied 

and fundamental problems. 

Scientific novelty. In order to improve the performance efficiency of massively 

parallel computing in this paper a dynamic load balancing (DLB) scheme has been 

derived.  With the help of the Hilbert space filling curve (SFC) at a rough level it 

become possible obtain this method with different numerical methods and different 

computational costs per divided cell. 

Using the constructed parallel numerical algorithm, the following were 

performed: 

- numerical study of the efficiency of high-performance computing for flow 

problems behind a backward-facing step; 

- numerical study of the efficiency of high-performance computing when using 

hybrid parallel algorithms for problems of air flow in a complex nasal region; 

- hybrid parallel numerical computation using various methods of domain 

decomposition; 

- hybrid parallel numerical computation using the dynamic load balancing 

method; 

- evaluation of the efficiency of hybrid parallel numerical computation using 

different methods of domain decomposition; 

- efficiency evaluation of the hybrid parallel numerical algorithm using the 

dynamic load balancing method; 

- the comparison of the obtained simulation results with numerical data and 

experimental data of other authors was carried out; 

- the analysis of the obtained results of hybrid parallel numerical computation 

computation was carried out using the method of dynamic load balancing; 

Provisions for Defense. The work contains the following results:  

 results of a numerical study of the efficiency of high-performance computing 

for flow problems behind a backward-facing step 

 results of a numerical study of the efficiency of high-performance computing 

when using hybrid parallel algorithms for problems of air flow in a complex nasal 

region 

 results of hybrid parallel numerical computation using different domain 

decomposition method 

 results of hybrid parallel numerical computation using dynamic load 

balancing method 

 results of evaluating the efficiency of hybrid parallel numerical computation 

using various domain decomposition methods 

 the results of efficiency evaluation of the hybrid parallel numerical algorithm 

using the dynamic load balancing method; 
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 the obtained simulation results were compared with numerical data and 

experimental data of other authors. 

 the analysis of the obtained results of hybrid parallel numerical computation 

using the method of dynamic load balancing. 

Publication and approbation of results. The results of the dissertation were 

published in 11 papers [116-126], of which 2 are from the list, the THOMSON 

REUTERS database and 4 from the list, the SCOPUS database, 6 articles are from 

the list recommended by the Committee for Control in Education and Science of the 

Ministry of Education and Science of the Republic of Kazakhstan, 1 works - in the 

materials of international and republican conferences. 

The structure and scope of the thesis. The dissertation consists of a 

designation and abbreviation, an introduction, five chapters, a conclusion and a 

references. It is presented on 122 pages, references contain 126 items. 

The main content of the work. 
The first chapter provides descriptions of various technologies for high 

performance computing. 

The second chapter has a detailed description of the analytical models of the 

main characteristics of the parallel algorithm. 

The third chapter provides a detailed description of the mathematical 

formulation of the basic equations for modeling the problem. 

In the fourth chapter, numerical studies of the efficiency of high-performance 

computing for backward-facing flow problems are considered. 

In the fifth chapter, numerical studies of the efficiency of high-performance 

computing using hybrid parallel algorithms for airflow problems in a complex nasal 

region are considered. 

In conclusion, the results of the dissertation work are presented. 
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1. HIGH PERFORMANCE COMPUTING TECHNOLOGY 

DESCRIPTIONS 

 

Nowadays the need to solve complex applied problems with a large amount of 

computation and the fundamental limitation of the maximum speed of the "classical" 

ones - according to the von Neumann scheme - computers led to the appearance of 

multiprocessor computing systems (MVS) or supercomputers. 

Vector expansion of multi-core processors and their mass production gave 

impetus to parallel computing. Today, multi-core processors can be found in 

everything from supercomputers to handheld gadgets. A sequential program written 

without distributing work between different cores of the central processor and 

without vectorization cannot reveal the full potential of the computing capabilities of 

the central processor (Figures 1 and 2). Therefore, mainly for improving the 

efficiency of the algorithm, in other words means applying parallel computing 

applications. Obviously there are certain parameters that affect to the choice of 

parallel algorithms and technical solutions. The main of them is the dimension of the 

spatial grid. Thus, due to the fact of using rather coarse spatial grid, multiprocessor 

systems with shared memory are preferable rather than using systems with distributed 

memory. While for implementation using multiple threads, it is expedient to prefer 

the implementation of using multiple processes. Moreover, the cost of 

synchronization of workflows and the problem of its minimization play a significant 

role on efficiency. 

 

 
Figure 1 - The disturbed memory multiprocessor architecture. 

 

 



11 
 

 
Figure 2 - The shared memory multiprocessor architecture. 

 

It is widely known that not all programs could totally be parallelized. So that 

any program consists of two domains: parallel and sequential. The difference is in the 

performance of the processes while generation. Based on the definitions of the 

sequential field follows that birth, execution and completion of the program happens 

in the same thread. Whereas generated by the parallelization threads can be executed 

as well as on different processors, and on a single processor computer system. 

Nevertheless, the access to the processors are not parallel, sometimes it is a 

competition between flows. Managing competition is held by the scheduler of the 

operating system using special algorithms. 

One of the most common methods of classification is Flynn’s computer 

taxonomy [10], in which the main point in the analysis of computer architecture is 

emphasis on the methods of interaction sequences (flows) of executing commands 

and data to be processed. With this approach the following main types of systems can 

be distinguished: 

 

 
 

 SISD (Single Instruction, Single Data) - a system in which there is a one 

instruction stream and one data stream. Conventional sequential computers may be 

included in this type; 

 SIMD (Single Instruction, Multiple Data) - single system command 

stream and multiple data streams. Such kind of class consists of multiprocessor 

systems that at each given time can be running the same command for processing 

multiple data elements; such architecture can be found in for example, multi-

processor systems with a single control device. This approach was widely used in 
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previous years, recently it has been seldom used, only, for creation of specialized 

systems; 

 MISD (Multiple Instruction, Single Data) - a system in which can be 

found both many instruction stream and one data stream. Still there is no consensus 

regarding this type of system: some experts believe that specific examples of 

computers that match the type of computer systems, do not exist and the introduction 

of this class is taken to complete the classification, while others refer to this type as, 

systems such as systolic computing or systems with conveyor data processing; 

 MIMD (Multiple Instruction, Multiple Data) – a system with multiple 

command stream and multiple data streams. Most parallel multiprocessor systems are 

concerned with a similar class. 

Among others, the next number of common problems encountered when using 

parallel computing can be considered: 

 Loss of productivity for the organization of overlapping - according 

to the hypothesis of Minsky [9], acceleration which is achieved using a parallel 

system is proportional to the binary logarithm of the number of processors (for 

instance, at 1000 processors possible acceleration is equal to 10). 

At this point the acceleration of parallelism of certain algorithm should be clarified. 

As there is a similar estimate held, regardless to the number of processors involved 

and percentage of parallelizing. 

 The existence of sequential computing - in accordance with Amdahl's 

Law [9, 10] accelerating the computation using p processors is limited to the value 

 

pff
S

/)1(

1




 

 

where f is the fraction of sequential calculations in the applicable data 

processing algorithms (for example, in the presence of only 10% of sequential 

instructions to perform calculations on the effect of parallelism cannot exceed 10 

times the speed of data processing). 

Summing up the above it could be declared that there could not be 100% parallel 

program. Therefor the share of consistent action is mainly depends on the certain 

percentage of sequential instructions. As a result, correctly chosen parallelization 

algorithm can significantly reduce the sequential parts. 

 The efficiency of parallelism has diversity of architectural design 

principles. The percentage of efficiently directly depend on the percentage of fully 

utilizing all the features of the equipment. Disadvantage of which is the difficulty of 

transfer parallel algorithms and programs between the different types of systems. 

In response to this observation, "homogeneity" also exists in serial computers, 

which means that in this case, the properties of the equipment should be taken into 

account for more efficient use. Moreover, today there are different types of system 

architectures. But along with them, other methods of parallelization are also popular 

(pipeline computing, multiprocessor systems, etc.). In addition, a variety of parallel 
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programs can be achieved using standard software for parallelization (built-in 

libraries, OpenMp and others)  

The current software is geared primarily towards serial computers - hence the 

lion's share of software is written in a serial algorithm, thereby making the processing 

of such a number of programs for parallel systems impossible. 

OpenMP is an application programming interface on shared memory devices. 

Therefore, parallelism is possible only where there is access to common data for all 

parallel processes. By dividing loops into different threads, parallelization can be 

achieved. 

MPI is a method opposite to OpenMP in its logic, which is reflected in the name 

itself. That is, it is a method of programming on devices with distributed memory. 

Simply put, each parallel thread has its own space.  

These kind of techniques are widely used in algorithmic languages like Fortran 

and C / C + +, as a result of description of standard and its implementation. 

To organize parallel computing in distributed memory conditions (where 

processes operate independently of each other), there is a need to distribute the 

computing load and organize information interaction (data transfer) between 

processors. As a solution to all these options, a data interface (MPI) can be proposed. 

1. Generally, these steps could be outlined for the distribution of computation 

among the processors: 

1) analysis of an algorithm for solving the problem 

2) providing independent information fragments of computation  

3) implementation  

4) received parts distribution of the program on different processors. One of 

the simple ways of covering all these steps in MPI – development of only 

program code running at the same time on all available processors! Obviously, 

this method leads to identity calculations on different processors. In order to 

avoid this substitute different data for the program on different processors and 

take into account the difference in calculation by means of identifying the 

process that executing the program.  

2. Appropriate operations for the organization of information exchange between 

processors like sending/receiving and transmitting data are the most minimal 

variant. Not least importance should be paid to the sufficient space for 

communication between processors. There are many data transfer operations in 

the MPI which are applied by means of communication operations. This 

opportunity is the most powerful part of MPI (what is particularly shown by 

the name - MPI). 

As a result attempts to create software for data transfer between processors 

began almost immediately with the advent of local computer networks - a series of 

such tools is presented, for example, Quinn (2004), Alexey L.Lastoevsky (2009) and 

many others. However, incompletely and incompatibility of these works were the 

main disadvantages. Moreover the problem of transferring software to other computer 

systems becomes acute. Thus lead to the active attempts by scientists to standardize 

the organization of messages in a multiprocessor system. The bull point in emergence 



14 
 

of MPI was a workshop on standards for transmission of messages among the 

distributed memory (the Workshop (later transformed into the international 

community to MPI Forum group) on Standards for Message Passing in a Distributed 

Memory Environment, Williamsburg, Virginia, USA, April 1992). As a result the 

1994 standard MPI version 1.0 was created and even adopted. Later in 1997 MPI 

standard version 2.0 appeared. MPI becoming the most widely used API for 

delivering a required datum to another part of a program at some future time by using 

the future concept. Another reason of MPI popularity is its easy usage in high level 

languages as Fortran, Java and C++. 

So let us give more deep definition for MPI. By past organization of transferring 

messages, it is also enabling transmission of messages and thus meets all 

requirements of the standard of MPI. Moreover, these tools should be organized in 

the libraries and be accessible. But the difference between MPI as a standard and 

saying MPI as a usage of it as a library in the program should be clearly separated. As 

these two different interpretations of them.  

There are issues related to the development of parallel programs using MPI [10, 

11]. Let us outline positive concepts of MPI: 

 In addition to cross platform programs with MPI libraries, they greatly 

alleviate the problem of portability of parallel programs between different computer 

systems 

 Nowadays there are different MPI libraries adopted every type of computer 

system in order to get the maximum possible extension taking into account computer 

equipment possibilities of using a computer; 

 It could be said that MPI reduces the complexity of developing parallel 

programs. As standard of MPI provide the most basic operations of data transmission 

while MPI libraries have a large number of parallel methods. 

 

1.1 High-Performance Computing with MPI Technology 

 

Let us consider the concepts and definitions that are fundamental to the standard 

MPI. 

 

1.1.1. The concept of a parallel program 

Many parallel processes can be considered as a parallel program under MPI 

tools. Processes can run on different processors, but on a single processor some 

processes can also be located at the same time (in this case their response will be 

implemented with time sharing). In the extreme case, only one processor can be used 

to execute a parallel program - as a rule, this method is used for the initial verification 

of parallel programs. 

Usually the same software package serves as the basis for a parallel program, 

that is, its copy - the code being executed must be available on all processors during 

the execution of the parallel program. C or FORTRAN are frequently used languages 

for source code, using one or another implementation of the MPI library. 
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At the stage of execution the number of the processors is determined and it 

cannot be modified during the run time of a program. Thus the number of the 

processor/process is called rank ranked from 0 till np-1, while the total number of 

them is usually called size. 

 

1.1.2 Operation Data 

The core of the MPI infrastructure is messaging operations. For synchronous 

operation of several processors during collective communication, there are various 

paired operations in MPI.  

Different transmission modes like synchronous, blocking can be used to perform 

binary operations. 

As mentioned earlier, the MPI standard is designed to implement the most basic 

collective operations for data transfer [10-13]. 

 

1.1.3 The concept of communicators 

Combining the processes of a parallel program create groups. The 

communicator in MPI is used for data transfer operations, while it combines process 

groups and a number of additional parameters (context) to use. It is also a generating 

service object.  

As a rule, for processes belonging to the same communicator paired data 

transfer operations are performed. Whereas collective operations apply 

simultaneously to all communicator processes. As a result, reference to the 

appropriate communicator is a mandatory instruction for data transfer operations in 

MPI. 

When executing a program process, existing groups of processes and 

communicators can be destroyed or created as new. Different groups or 

communicators may perform the same process. All existing parallel software 

processes are part of the MPI_COMM_WORLD communicator, which is actually the 

default device. 

Moreover to transfer data between processes of different groups, a global 

communicator (intercommunicator) is required. 

 

1.1.4 Virtual topology 

As mentioned earlier, between any processes of the same communicator paired 

data transfer operations can be performed. And all processes of the communicator 

have to be included in a collective operation. In this regard, the structure of a 

complete graph (regardless of the actual physical connections between processors) 

could be named as the logical topology of connections between processes. 

Thus taking into account above, it is advisable to consider the logical 

representation of the existing communication network in the form of various 

topologies for the presentation and further analysis of a number of parallel 

algorithms. 
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In MPI many processes could be presented in the form of a lattice of arbitrary 

dimension. In this case, arrays of boundary processes can be declared neighbors and, 

thus, torus structures can be determined based on the lattice [10, 11]. 

Moreover, MPI gives a possibility to form a logical (virtual) topology of any 

desired type. 

 

Sequential programming models have the following characteristics:  

 relatively low productivity; 

 use of standard programming languages; 

 good portability of programs at the source code level. 
 

In their terms parallel programming model is characterized by:  

 the ability to achieve higher performance programs; 

 use of special programming techniques; 

 use of special programming tools; 

 more time-consuming programming; 

 problems with mobility. 

 

1.2 High-Performance Computing with OpenMP Technology 

 

OpenMP (Open Multi-Processing) is an open standard for parallelizing 

programs in the C, C ++ and Fortran languages. It describes the set of compiler 

directives, library routines, and environment variables that are intended for 

programming multithreaded applications on shared memory multiprocessor systems. 

The development of the standard specifications is carried out by the non-profit 

organization OpenMP Architecture Review Board (ARB) [1], which includes all 

major processor manufacturers, as well as a number of supercomputer laboratories 

and universities. The first version of the specification was released in 1997, it was 

intended only for Fortran, the next year a version for C and C ++ was released. 

OpenMP implements parallel computing using multithreading, in which the master 

thread creates a set of slave threads, and the task is distributed among them. Threads 

are assumed to run in parallel on a machine with multiple processors. 

Tasks executed by threads in parallel, as well as the data required to perform 

these tasks, are described using special preprocessor directives of the corresponding 

language - "pragmas". Thus, Fortran code, which must be executed by several 

threads, each of which has its own copy of the variable N, is preceded by the 

following directive:! $OMP PARALLEL PRIVATE (N). The number of threads 

created can be controlled both by the program itself by calling library procedures, and 

from the outside, using environment variables. 

Key elements of the standard: 

 constructs for creating threads (parallel directive), 

 constructs for distributing work between threads (DO / for and section 

directives), 
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 constructs for managing work with data (shared and private expressions for 

defining a variable memory class), 

 constructs for synchronizing threads (directives critical, atomic and 

barrier), 

 runtime support library routines (e.g. omp_get_thread_num) 

 environment variables (for example, OMP_NUM_THREADS). 

 

1.2.1 OpenMP ideology 

There are many types of parallel computing systems - multicore / multiprocessor 

computers, clusters, systems on video cards, programmable integrated circuits, etc. 

The OpenMP library is only suitable for programming shared memory systems using 

thread parallelism. Threads are created within a single process and have their own 

memory. In addition, all threads have access to the process memory. It can be 

schematically represented in this form. 

 
 

1.3 Models of parallel programming 

 

There are various techniques, having a special purpose at different architecture 

of high-performance computing systems and various tools in the range of parallel 

programming model. Several of them are listed below. 

 

Message-passing model 

Key features of this approach: 

 The program outlines several problems. 

 Each task has a unique identifier. 

 Sending and receiving messages the main tools of interaction. 

 Multiple tasks can be performed on one processor. 

 New tasks can be generated during the execution of a parallel program. 

 

Concurrency model data 

 

Key features of this approach:  
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 The program contains a sequence of one operation to the set of data 

structure elements operations. 

 "Grits" computing is low. 

 The allocation of the data is made manually. 

 

1.4 Development of parallel algorithms 

 

Development phases of parallel algorithm:  

1. Decomposition. 

Ignoring architectural features of a particular computer system problem is 

considered from the point of parallelization. In other words, the program is 

divided into several sub-programs. 

2. Designing exchange (data communication) between tasks. 

By defining communication methods for data transfer of source data and 

intermediate results of sub-programs manage the problem. 

3. Enlargement. 

Combination to larger units of sub-programs could be considered in order to 

increase efficiency and decrease the complexity of development. 

4. Scheduling algorithms. 

Subtask distribution among the processors. Reducing exchange time 

effectively use of processors – key point for choosing the method of destitution 

of sub problems. 

 

1.4.1 Decomposition (segmentation, splitting) 

There are various methods of decomposition. Implementation of data 

decomposition could be divided into following steps: data segmentation and the 

algorithm processing. The divided data is separated into fragments of approximately 

the same size. Transaction processing is coupled with a certain part of the data from 

which subtasks will be generated. Then the steps for determining the necessary 

transmission data should be defined. Duplicate calculations should be outlined in the 

intersection parts of the program. In order to reduce the number of exchanges number 

of stacks’ overlapping can be increased. 

Data structure with the largest size, or those that are accessed more often than 

others are analyzed first. Various stages of the calculation require data structures. So 

it can be used for both static and dynamic decomposition schemes of these structures. 

 

1.4.2 Recursive dichotomy 

The possibility of dividing into sub regions keeping complexity but decreasing 

the communication – this is called recursive dichotomy. First of all single dimension 

is considered and divided into two parts. Then recursively executes the process of 

portioning for each sub domain with a given a number of subtasks.  

For example, for irregular grids recursive coordinate dichotomy likely to be 

applied. As described above the process first is performed at each step along that 

dimension. In addition, the method of recursive count dichotomy can be also applied 
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for this type of grids. In this instance the number of edges crossing the boundaries of 

subdomains is minimized by means of lattice topology. 

 

1.4.3 Functional decomposition 

In the cases when there is no obvious parallelization of the algorithm, functional 

decomposition method can be useful. By segmenting first the numerical algorithm, 

later the data decomposition scheme is configured according to the adopted scheme. 

The efficiency is ensured by the following points: 

 After decomposition the number of processors at least for one is less than the 

number of subtasks’ order; 

 Needless computations and data manipulation should be avoided; 

 Approximately of the same size for the sub tasks; 

 Increase in a number of subtasks leading to the increase in problem (while 

maintaining a constant size of a subtask) is a good point as a characterized 

segmentation. 

The size of sub problems defines granularity of the algorithm. While a number 

of operations in the block is a measure of the granularity. Three degrees of 

granularity could be outlined: 

1. Fine-grained parallelism - instruction-level (less than 20 teams per block, the 

number of concurrent sub-tasks - from a few to several thousand, the average 

scale parallelism of about 5 commands per block) 

2. Medium-grained parallelism - at the level of procedures. The block size is 

2000 operations. Identification of such parallelism is more difficult to 

implement, as inter procedural dependence should be considered 

also. Requirements for communications are less than in the case of instruction-

level parallelism. 

3. Coarse-grained parallelism – level of programs (tasks). It corresponds to the 

execution of independent programs on a parallel computer. Coarse-grained 

parallelism requires the support of the operating system. 

By the way the most important condition of decomposition - independence of 

subtasks. There are main types of independence:  

 Independence of data - data that are processed by one part of the program is 

not modified in another part of it.  

 Independent management - the order of execution of the program may be 

determined only at a run time (the sequence of execution is determined depending on 

availability management). 

 The independence of the resource – provided by the sufficient computing 

resources. 

 Independence of the conclusion - occurs if two subtasks do not produce an 

entry in the same variable, and the independence of I / O, if the operators input- 

output of two or more subtasks do not apply to a single file (or variable). For 

example, we can use it for solving whole Navier – Stokes equations system. 

 Complete independence is usually unreachable to achieve. 
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1.4.4 Design Communications 

Nowadays following basic types of communications could be outlined: 

 local - each sub problem is associated with a small set of other sub-tasks; 

 global - each sub problem is associated with a large number of other sub 

problems; 

 structured - each sub-task and subtasks associated with it, form a regular 

structure (for instance, the topology of the lattice); 

 unstructured - subtasks associated arbitrary graph; 

 static - communication scheme does not change over time; 

 dynamic - the scheme of communication varies during program execution; 

 synchronous - the sender and recipient of the data coordinate an exchange; 

 asynchronous - sharing data is not coordinated. 

 Moreover the following recommendations for communication design could 

be given:  

 In order to avoid poor scalability subtasks should have approximately the 

same number of communications; 

 Constantly use local communication as much as possible; 

 And try to parallelize communication as much as possible. 

 

1.4.5 Enlargement 

Taking into account the results of the previous two steps, at the stage of 

agglomeration combination of them occurs so that their number corresponds to the 

number of processors.The agglomeration demands the following requirements: 

 overheads of communication must be reduced; 

 if the consolidation requires duplication of the calculations or data, this 

should not lead to loss of performance and scalability of the program; 

 the resulting problems should have roughly the same complexity; 

 scalability must be maintained; 

 the possibility of parallel execution must be maintained; 

 labor cost of development must be reduced. 

 

1.5 High-Performance Computing with OpenMP/MPI Technology 

 

Almost linear scaling in the number of MPI processes and in time can be noted 

regarding the efficiency of algorithms with natural data distribution (explicit schemes 

for parabolic equations, separation of variables for elliptic equations, domain 

decomposition methods, etc.). To improve efficiency on one computing node with 

OpenMP, it is necessary to introduce local arrays for each of the sweats, as shown, 

for example, in [1, 2]. The above described can be achieved by applying an algorithm 

of technology similar to MPI, but do not forget about the need for shared memory on 

the node.  

The concept of data distribution between computing nodes, similar to MPI, is 

used in this hybrid implementation of MPI/OpenMP. Which means there is one MPI 
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process per node. At each of the computing nodes, an important point is the exchange 

of data and the organization of the overlay of calculations. Three timed data 

exchanges occur at each step of the circuit. Moreover, each previous exchange 

consists of more runs to find the necessary stream components. The main idea is to 

send small arrays partly during the passages, and not in one large array after all 

passes in a certain direction. Moreover, while one part is busy sending already 

processed data, the other part is busy processing. That is, the solver threads are busy 

performing runs of the relevant data.  

Hybrid scheme concept: with postmen for the case of two MPI processes with 

n+1 OpenMP threads (postman + n solvers) on each of the processes. Data 

corresponding to MPI processes numbered 0 and 1 are separated by a horizontal 

plane. In this example, on each of the processes, the data is divided into eight blocks, 

each block corresponds to the execution of part of the runs. According to the 

proposed idea, one postman and n solvers work simultaneously on each of the 

processes, which together perform sweeps for each of the blocks. Numbers 0 denote 

blocks processed by solvers at process 0, and 1 - blocks processed by solvers at 

process 1. After several blocks are processed in parallel at each of the two processes, 

the postmen (one at each of the processes) simultaneously send the already processed 

blocks, and the solvers process the next blocks, etc. All available blocks that have 

been processed by all MPI processes by the current moment are involved in the data 

exchange each time. The order of processing blocks is chosen in such a way that at 

the moment when the last blocks are exchanged, the solvers could already perform 

the next step of the algorithm, in this example, these are sweeps along the other 

direction. To do this, either during calculations, or during data exchanges, or at the 

stage of assembling the right-hand side, it is necessary to change the local numbering 

within each block of attacks so that the corresponding data has already been “sliced” 

along the required direction. 

 

1.6 High-Performance Computing Performance Assessment 

 

This relation can express the speedup of the parallel algorithm: 

 

Tp

T
Sp

1
 , 

 

where 1T – is the execution time of the program on one processor, Tp  – the 

execution time of the program on p processors. 

Due to the acceleration it is possible to compare the behavior of algorithm with 

one and p processors. The effectiveness of the parallel algorithm is closely related to 

the acceleration. The efficiency of a parallel algorithm: 

 

p

Sp
E p   
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Since acceleration pSp  , the efficiency of the algorithm 1pE . A comparison of 

the acceleration values obtained numerically with theoretical calculations based on 

the Amdal and Gustafson-Barsis acons was also carried out. The application of 

Amdahl's law makes it possible to determine the maximum theoretical acceleration of 

a parallel solution relative to a serial code (Figure 3). It follows from this law that the 

acceleration of program execution by parallelizing the program on a certain number 

of processors is limited by the time required to perform its sequential operations. 

 

n

Sp








1

1

 
 

where   – the proportion of work that can be parallelized; n - number of 

computational processors. 

Whereas Gustafson's law gives an estimate of the theoretical acceleration of the 

calculation of the problem with an increase in the volume of the problem, which leads 

to a decrease in the share of the subsequent part of the problem (Figure 4). For 

Gustafson's law, the acceleration is called the scaling acceleration. 

 

*)1( nnSp  , 

 

where   – the proportion of work that can be parallelized; n  – number of 

computational processors. 

 
Figure 3 – Use of law of Amdahl. 
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Figure 4 – Gustafson-Barsis' Law; by increasing the problem size with P, the serial 

portion increases slowly and speedup increases as processes are added. 

 

When making a conclusion about the laws of Amdahl and Gustafson-Barsis, it is 

necessary to note that they are both correct. Amdahl's law should be applied if you 

need to run a program faster while maintaining the same load. Whereas at the same 

time, but with a greater load, one can notice the influence of the Gustafson-Barsis 

law. 
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2 ANALYTICAL MODELS OF THE MAIN PARALLEL ALGORITHM 

CHARACTERISTICS 

 

2.1 Topology of data transfer processes 

 

As you know, a point-to-point operation is a function for the interaction of no 

more than two program processes. 

In this work MPI MPI_Sendrecv (communication function) was used to send 

and receive messages from one processor to another. 

 

C/C++: 

int MPI_Sendrecv (void * sendbuf, int sendcount, MPI_Datatype sendtype, int 

dest, int sendtag, void * recvbuf, int recvcount, MPI_Datatype recvtype, int source, 

MPI_Datatype recvtag, MPI_Comm comm, MPI_Status * status), 

 

Input Parameters 

 

sendbuf 

    Initial address of send buffer (choice).  

sendcount 

    Number of elements to send (integer).  

sendtype 

    Type of elements in send buffer (handle).  

dest 

    Rank of destination (integer).  

sendtag 

    Send tag (integer).  

recvcount 

    Maximum number of elements to receive (integer).  

recvtype 

    Type of elements in receive buffer (handle).  

source 

    Rank of source (integer).  

recvtag 

    Receive tag (integer).  

comm 

    Communicator (handle). 

 

Output Parameters 

 

recvbuf 

    Initial address of receive buffer (choice).  

status 

    Status object (status). This refers to the receive operation. 
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By itself, the MPI_Sendrecv procedure sends sendcount and sendtype elements 

from the sendbuf array. This sends a message identifier with the dest number in the 

communicator during the sendtag process. Moreover, in the comm communicator, no 

more than recvcount elements of the recvtype type with the identifier of the received 

message recvtag are received into the recvbuf array. The state parameter is stored for 

the received message. Whereas the same processor can be the recipient and the 

sender at the same time. However, an intersection in the process address space of 

received and transmitted data is not allowed. The MPI_SENDRECV and 

MPI_SENDRECV commands can be used to receive and send in the usual way. In 

this case, different data types and different lengths of transmitted messages are 

allowed. 

The topology of data transfer processes is built from certain communications 

between the processors of a computer system. The following schemes of 

communication processes can be noted: 

1) designed for a small number of processors - a complete graph (any pair of 

processes has a direct connection); 

2) clear numbering and communication with only two neighboring processors 

(except for the first and last) - a ruler; 

3) when connecting the first to the last processors from the previous topologies, 

a ring graph was taken; 

4) if all processors have a connection with some control processor, it is called a 

star topology; 

5) The most easily implemented topology. It is effectively used in parallel 

computations of numerical algorithms, as well as in partial derivatives. The structure 

itself is a two- or three-dimensional rectangular grid - a lattice. 

6) A particular version of the lattice structure is a hypercube. The peculiarity is 

that there are only two processors for each dimension of the grid (i.e., the hypercube 

contains 2N processors of dimension N). 

For this work, the topology of the lattice was analyzes. The Hockney model [14] was 

invoked to estimate the execution time of passing byte messages between two 

processes: 

 




ln
commT

*
_ 

, 

 

where  – is the latency (the length of the message preparation for transmission), the 

length of the transmission path (byte), and   – the bandwidth of the data link 

(byte/second). 

The length of the data transfer path depends on the type of process topology. For the 

lattice topology pl  . 

 

 



26 
 

2.2 Analytical models for estimating the of energy consumption, memory 

and time of collective operations characteristics 

 

Information exchange can be divided into three types [2]: 

1. Two-way exchanges (differentiated exchanges, point-to-point exchanges). 

Two processes are involved in this exchange: the message sending function 

(MPI_Send) and the message receiving procedure (MPI_Recv). 

2. One-way connections. Obviously, here only one of the two branches actively 

participates in the operation and implements remote access to the memory of the 

second process for reading or writing (Remote Memory Access Џ RMA). MPI_Put 

and MPI_Get are prime examples of such operations. Moreover, there are similar 

operations in the SHMEM, BSP, and Uniied Parallel C libraries. In some 

circumstances, such functions make it possible to avoid unwanted process 

synchronization. 

3. Participation of all program processes - collective operations (global, group 

operations, collective communications). There are two types of root and non-root 

operations. The first type includes: broadcast transmission (one-to-all, one-to-all) and 

collector reception (all-to-one, all-to-one). Whereas to non-root (unrooted) exchanges 

of the type "all-to-all" (all-to-all). For most types of algorithms, the execution time of 

collective operations plays a very important role and their scalability directly depends 

on this. To implement collective operations, a two-way exchange is used. There are a 

number of ways for collective exchanges in the MPI libraries: by ring, recursive 

doubling, recursive halving (recursive halving), Brook [23]. Moreover, for pairwise 

exchange algorithms and algorithms, the ordering of branches into trees of different 

types: binomial trees (binomial tree); balanced -ary trees, plane trees (lat-tree, linear 

tree), chains (pipeline, -chains) [24]. 

The most important advantage of MPI is the existence of more complex types of 

interactions, in which all processes associated with a particular communicator take 

part. It is these interactions that are called collective. 

When writing MPI programs, collective operations are often used. For example, 

if it is necessary to distribute a variable or an array from one processor to all other 

processors, or vice versa, it is not advisable to collect information in the same place 

using point operations. While the use of collective - the best option. 

Below are some of the distinguishing features of collective operations: 

1) Lack of intersection of point-to-point operations with collective ones; 

2) After the completion of its part, the subroutine in each process returns from 

the collective operation, but this is not at all a sign of the completion of the entire 

collective operation. It follows from this that collective operations are a blocking 

operation. 

3) the need for the same number of sent and received elements; 

4) similar to the point above, but the point is in data types; 

5) absence of message identifiers. 



27 
 

There is also the concept of global computational operations. These include 

operations of addition, finding the maximum, etc. MPI_Reduce, MPI_Allreduce, 

MPI_Scan, MPI_Reduce_scatter, can be attributed to the above type. 

 

The syntax of MPI_Allreduce on С/C++: 

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count, 

                  MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 

 

Input Parameters 

 

sendbuf 

    starting address of send buffer (choice)  

count 

    number of elements in send buffer (integer)  

datatype 

    data type of elements of send buffer (handle)  

op 

    operation (handle)  

comm 

    communicator (handle) 

 

Output Parameters 

 

recvbuf 

    starting address of receive buffer (choice)  

 

 
Figure 5 – The usage of MPI_AllReduce function. 

 

There is a possibility of deadlocks given circular dependencies. Since when 

sending-receiving both can be the same processor. Naturally, there are ways to avoid 

this situation. For example, the use of various blocking techniques (it is possible to 

divide processors into even and odd ones). In the collective exchange of information, 

analytical models such as time, power consumption, and memory models can be used 

to evaluate the performance of an algorithm. 
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Thus, for the analytical study of the execution time of the collective work 

algorithm, the LogGP communication model [17] was used. Plus, the model applies 

to both short and long transmitted messages. The LogGP collective operation 

execution time estimation model is described by the following parameters: 

L – is the maximum value of the latency of the message transmission of one 

processor to another (latency); 

o – the time interval during which the processor can not perform other 

operations, i.e. When the processor is busy transmitting or receiving a message 

(overhead); 

g – is the minimum time interval between consecutive transmissions or 

reception of a short message, 1/g is the capacity of the communication channel for 

short messages (gap); 

G – is the minimum time interval between consecutive transmissions or 

reception of one byte of a long message, 1/G is the capacity of a communication 

channel for long messages (gap per byte); 

P – is the number of processors in the system. 

 

 
Figure 6 - Spatial-temporal scheme of processor interactions in LogGP model: 

processor 0 executes three message transferring to processor 1. 

 

On figure 6 shows a space-time diagram of processor 0 sending three long 

messages in sequence to processor 1 using the LogGP model. That is, at time o 

processor 0 has completed the transmission of the first byte of the message to the 

network, at time o + G the second byte of the message has been sent to the network. 

Moreover, the last byte of the first message will be sent to the network. 

o + (m - 1) G. Delivery of each byte of the message from processor 0 to 

processor 1 takes L units of time. The first byte of message processor 1 arrives from 

the network at time o + L. Reception of the entire message processor 1 ends at time o 

+ L + (m - 1)G + o. 

The sum of dynamic and static energy [18, 19] can be represented as a model of 

energy consumption. Everyone knows that static energy is the energy consumed by 

the system when the mode is on, but in an inactive state. Whereas the energy 

consumption for computing, or receiving - sending messages, is called dynamic. 

Considering only the energy for message transmission, but not spent on calculations 
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on local processors, studies were carried out. To create communication energy, it was 

assumed that each message spends a fixed energy e. Let's introduce the notation for 

the energy required to transfer each byte from the source memory to the target 

memory as E. 

So, the total energy consumption of the collective operation 

 

L = T · P + D, 

 

where T is the collective operation time (based on LogGP), P is the leakage 

power, D is the dynamic energy consumption model. In this paper, dynamic energy 

models are the sum of all the dynamic energies consumed by each processor.  

To predict the used memory, a simple memory model is considered. It assumes 

that each sent message is explicitly specified as a descriptor in the upload operation. 

For example, that these descriptors have a constant size d. This descriptor size is 

independent of the actual size of the message being sent (received). The maximum 

memory required for any process is calculated. 

 

2.3 Optimization of collective operation algorithms 

 

The exchange of messages between processors is carried out by a directed 

graph. In other words, a certain virtual topology. The most popular are distribution 

algorithms, specialized algorithms, and trees in various forms. The latter can be used 

to implement any collective communications and the transmission of messages is 

standard from parent to child. 

Consider a flat tree (FT) [20], where messages are sent directly. This algorithm 

is one of the simplest. Figure 6 shows an example of such a tree for a personalized or 

personalized operation. Green squares on the edges of the connection denote the 

transmitted data of size s. Annotations in this and the following figures indicate the 

end time of the processes in the example. In all figures, it was assumed that the data 

is sent to the children of the process in order, starting from the very left. Although the 

simplicity of the algorithm is a clear advantage, its sequential communication limits 

performance. 

To calculate the execution time for such an operation, the LogGP model uses the 

formula: 

 

(s) O-P sG) + (o = 1)-(PsG  + oP + L = T_FT  
 

Dynamic energy consumption for this algorithm is presented as 

 

(s) O- sE) + (e P = sE) + (e 1)-(P = D_FT  
 

The maximum storage in the root of the tree is (Figure 7) 

 

 1)-(P d = M_FT . 



30 
 

 
Figure 7 – The implementation of the collective algorithm of a flat tree (FT) 

with the number of processes (P=7). 

 

Tree topologies are popular for root collective operations. In most cases, 

ordinary trees are used (when the number of child nodes is the same). This view gives 

superior to flat tree topics, performing collective operations, processes 

simultaneously perform interactions and, thus, achieve higher performance. Figures 

8a and 8b show the transmission of personalized and non-personalized messages 

using the binary tree algorithm. Whereas the execution time of the k-dimensional tree 

algorithm of a non-personalized operation in the LogGP model is calculated by the 

formula 

 

)1(log)(log)(])[log sG) + (ok + (L = T_KT OPsOPksGkoLPo kkk 
 

 

Dynamic energy consumption for this algorithm is presented as 

 

     (s) O - sE) + (e P = sE) + (e 1) - (P = D_KT  
 

The maximum required storage in the root node of the tree is estimated by the 

formula 

 

kd, = M_KT  
 

since each process sends a message to at most k-child computing nodes. 

Moreover, the execution time of the algorithm in the LogGP model for 

personalized messaging using the k-dimensional tree algorithm is calculated by the 

formula 
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and memory consumption is the same as non-personalized data transfer 

 

kd, = M_KT  
 

 
a)                                                             b) 

Figure 8 – The implementation of the collective binary tree algorithm (KT): a) 

personalized transfer; b) non-personalized transfer. 

 

The very famous Butterfly Graph (BF) [21] demonstrates a binary scheme for 

fast data exchange between all processes, with the number of processes P being a 

power of two. The implementation of the BF algorithm consists of steps, where P is 

the number of processors. At level k, one can observe data exchange between streams 

spaced 2k apart. On figure 9b and 9c, one can see the scheme of the BF algorithm 

with the number of nodes P = 8 for personalized and personalized messaging, 

respectively. 

The execution time of the BF algorithm of non-personalized data transfer in the 

LogGP model can be represented by the formula 

 

PL)log +sG  + (2o = T_BF 2  
 

dynamic energy consumption 

 

 PsE)Plog + (e = D_BF 2  
 

with consumed memory P dlog = M_BF 2 . 

The recursive doubling algorithm [22] as well as the Brooks algorithm [23] 

implement the BF scheme for personalized messaging. The execution time of these 

personal algorithms can be represented by the formula below: 

 

(s), O - sGPP L)log + (2o = 1) - (P GsP L)log + (2o =) (T_BF 22   
 

dynamic energy consumption can be modeled as 

 

)()log()1(log_ 22 sPOsEPPePPPsEPePBFD   
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and their need for memory 

 

P. dlog = M_BF 2  
 

 
Figure 9 – The implementation of the collective algorithm Butterfly (BF): a) 

personalized transfer; b) non-personalized transfer. 

 

Based on collective algorithms, to be more precise, a flat tree (FT) and a regular tree 

(KT), the time, energy and memory costs for the execution of the collective 

MPI_Reduce procedure were considered. The LogGP parameters used the previously 

described characteristics measured for the Intel Phi processor using parallel MPI 

technology: L=6 µs, o=4.7 µs, G=0.73 ns/B [24]. The parameter e, which is 

responsible for the expenditure of the necessary energy for the exchange of messages 

between the processors, has the value e=16.5 pJ. Moreover, the energy E required to 

transfer each byte of a message from the source memory to the destination memory 

was equal to E=8.1 nJ/B [25-30]. 

Summing up, it can be said that the optimal collective algorithms with respect to 

the execution time of the algorithm demonstrate non-optimal dynamic energy costs. 

Moreover, the energy cost of the fastest algorithm is asymptotically higher compared 

to the energy cost of the slower algorithm. In addition, it is shown that large amounts 

of memory are needed for optimal algorithms in relation to the energy consumed. On 

figure 10 shows graphs of execution time, power consumption, and memory for a 

non-personalized MPI_Allreduce collective operation using the Flat Tree (FT) and 

Binary Regular Tree (KT) algorithms. From the results of the runtime graphs, it can 

be said that the binary regular tree (KT) algorithm is a more rational option regarding 

the execution time of the flat tree (FT) algorithm. Nevertheless, the binary regular 

tree (RT) algorithm performed worse than planar trees in terms of the energy model 

for a large number of processes. But the opposite can be said in the issue of memory 

consumption by algorithms. This can be explained in direct proportion to the number 

of child computations k nodes. As a result, it can be admitted that each of the 

algorithms has its own advantages and depends on certain metrics [11, 31–36]. 

Schedules were compiled to perform the collective data exchange of the 

MPI_Allreduce operation using two different collective algorithms (Figure 11). 
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a) Runtime 

 
b) Energy 

 
c) Memory 

Figure 10 – The execution time, energy consumption and memory dependence of the 

non-personalized MPI_Allreduce function by using the flat tree (FT) algorithm and 

the binary regular tree (KT). 
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a) a flat tree (FT) 

 
b) a binary regular tree (KT) 

Figure 11 – The non-personalized MPI_Allreduce function: a) a flat tree algorithm 

(FT); b) a binary regular tree (KT). 

 

Figure 11 compares the theoretical data with the obtained collective work time 

for two different algorithms based on the LogGP communication model. So it can be 

noted the smaller time spent on the MPI_Allreduce operation for the flat tree 

algorithm. 

Based on the data in Table 1, it can be noted the dependence of the main 

characteristics of the parallel algorithm, such as execution time, power consumption, 

and memory of the non-personalized MPI_Allreduce collective operation using the 

flat tree (FT) algorithm and the binary regular tree (BT). Moreover, in this table, it is 

necessary to emphasize the merits of each algorithm, depending on the choice of 

evaluation metric. 
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Table 1 – Comparative analysis of the simulation time, energy and memory of 

sequential and parallel calculations for different sizes. 

 

 Flat tree algorithm k-regular tree algorithm 

Number 

of 

processo

rs 

Runtime Energy Memory Runtime Energy Memory 

3 8.09669 0.19445 96 5.74493 0.617093 128 

7 20.0272 0.453715 224 8.010156 2.55021 128 

15 46.348 0.972248 480 11.20013 7.60487 128 

31 152.254 2.000931 992 22.783 19.9296 128 

63 104.542 4.08344 2016 25.8021 48.8656 128 
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3 BASIC EQUATIONS OF HYDRODYNAMICS FOR MATHEMATICAL 

MODELING OF PHYSICAL PROCESSES 

 

By now, it is becoming obvious that all the problems that arise in aerodynamics 

and hydrodynamics in the numerical solution of the Navier-Stokes equations are 

unlikely to be solved even when using the most powerful computers with tens and 

even hundreds of billions of operations per second. Therefore, in connection with 

their ever-increasing use in solving scientific and technical problems, it is important 

to provide the greatest possible scientific and practical base. This is facilitated by the 

deep penetration of mathematical modeling methods into a particular subject area. 

 

3.1 Law of mass conservation. Continuity equation. 

 

In the dynamics of a discrete system of material points, dynamic characteristics, 

including inertial ones, were attributed to individual points of the system. In the case 

of an absolutely rigid body, both total characteristics, but related to sharply defined 

areas of the rigid body, and forces concentrated at specific points of the rigid body, 

moments of forces were considered. In the dynamics of continuums (liquids, gases, 

elastic and other "solid" deformable bodies), this approach is replaced by the 

assignment of continuous distributions of dynamic and, in general, physical quantities 

over a continuum, characterized by the distribution density of these quantities. 

The first example of such a problem can be the mass distribution density in the 

form of the limit of the ratio m  of the mass of a small volume  , containing a 

given point M, to the volume  , when the latter tends to zero, shrinking to the point 

M. The ratio 


m
 is called the average density in the volume  , and the limit of this 

ratio   at is the density of the medium at a given point M and is denoted by the 

letter  , so that 

 




 






m

0
lim  

 

It contracts to the point M and get 

 










mm







 0
lim          (1) 

 

This equation (1) is followed by expressions for the mass of an elementary 

volume in terms of the density   

 

 m            (2) 

and the mass   of the finite volume allocated in the medium   
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


m
 

 

Differentiating equation (2) with time t, it obtains 

 

    0)(  


 
dt

d

dt

d

dt

d
m

dt

d
 

 

Considering that the mass does not change with time. 

Let's use the definition 

 

    V
dt

d
div  

 

Given the above expression, it will be possible to rewrite the equation in this 

form 

 

0div  


V
dt

d
 

 

Finally, it can be written in the form 

 

0div0div 







 V

dt

d
V

dt

d






 

 

Expanding the equations taking into account the total derivative, it will be 

possible to write in the form 

 

z
w

y
v

x
uV

tdt

d































t
grad  

 

Then the continuity equation can be written in the form 

 

.0divgrad 



VV

t



 

 

Now, it uses these properties 

 

  VVV divgraddiv    
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In the final form, the continuity equation for the compressible case will look like 

 

  .0div 



V

t



 

 

For the incompressible case, using the property .0




t


, the continuity 

equation can be rewritten in the form 

 

.0div V  or .0div V  

 

In the final case, the continuity equation for the incompressible case looks like 

this: 

 

.0div 















z

w

y

v

x

u
V  

 

3.2 The momentum theorem. Momentum equation. 

 

According to the general theorem on the change in the main vector of the 

system's momentum: the time derivative of the main vector of the system's 

momentum is equal to the main vector of external forces applied to the system. The 

individual derivative of the main vector is the amount of motion of the liquid volume 

and surface forces applied to particles located respectively in the volume and on the 

surface bounding it. 

 

 Vk  

 

k  - the amount of movement. 

The main momentum vector in the entire volume   is equal to the sum or 

integral of the elementary quantities of motion 

 




Vk  

 

The main vectors of external volumetric and surface forces will be respectively 

equal to 

 




F
      and 



np  
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Thus, just by the momentum change theorem, it leads to the equality 

 

 


 npFV  

 

Differentiate with respect to time the first term on the left of the equation and 

obtain 

 

  
 

 npFV
dt

d
        (3) 

 

On the left side of equation (3), it performs the transformation 

 

)()()( 
 

  
dt

d
V

dt

dV
V

dt

d
V

dt

d
 

 

Using the property for the last term     .0 m
dt

d

dt

d
 , it rewrites the 

above equation in this form 

 


 

  dt

dV
V

dt

d
 

 

In the last term on the right-hand side of equation (3), it makes a change and, 

according to the Gauss theorem, it has results equivalent to each other 

 

   
 

 332211 pnpnpnpn  

 

It uses the Gauss theorem and obtain 

 

  


 























3

3

2

2

1

1
332211

x

p

x

p

x

p
pnpnpn  

 

or the above equation can be written in this form 

 

   
 

 PnPpn div
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It substitutes the result obtained into equation (3) and obtain 

 

 


 PF
dt

dV
div  

 

Making some transformations 

 

 


 0)( divPF
dt

dV
 

 

taking into account the arbitrariness of the volume of integration  , it arrives at 

the following two possible expressions for the momentum equation of a continuous 

medium with stresses: 

 

3

3

2

2

1

1

x

p

x

p

x

p
F

dt

dV














 

 

 

In tensor form, the momentum equations look like this: 

 

k
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i
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V
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t
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
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


  

 

In a rectangular Cartesian coordinate system, the momentum equations in 

expanded form has the following form 
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3.3 Navier-Stokes equations. Newton's hypothesis. 

 

The generalized Newton's law gives a linear relationship between the stress 

tensor and the strain rate tensor, which is expressed in the case of an isotropic 

medium by the tensor relation 

 

bESP 


a           (4) 

 

the expression of the generalized Newton's law for an incompressible viscous 

fluid looks like 

 

V def2-pEpES2P  


 

 

or in component form, 
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Equation (4) is the rheological equation of a Newtonian incompressible viscous 

fluid. Expanded form the formulas of the accepted connection (4) in the Cartesian 

coordinate system 
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





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
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Substituting these expressions into the equations of motion and using the 

property, it obtains 
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At the end, it obtains the Navier-Stokes equations for an incompressible viscous 

fluid: 
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3.4 Discretization of governing equations 

 

For the numerical implementation of the set mathematical model, discretization 

is carried out using the finite volume method. To use the finite volume method, the 

formulated equations are written in the integral form 

 

  



S S

dqndSgradndS .      (5) 

 

Further use of the finite volume method depends on the type of computational 

grid (structured or unstructured). 
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3.5 Incompressible Navier-Stokes equations. Dynamic similarity 

(dimensionless). 

 

Let us proceed to the consideration of conditions for the similarity of two 

isothermal flows of Newtonian viscous incompressible fluids with different, non-

constant densities and viscosities. Let us reduce the Navier-Stokes equations to a 

dimensionless form, choosing as the scales of time, length (in particular, coordinates), 

velocity, pressure and body forces, respectively, some constant values characteristic 

of the flow PULT ,,, 0 . 

Denoting the dimensionless values of time, position coordinates, velocity, 

pressure, and forces with an upper underline, it was assumed (here it is more 

convenient to use letter indexing: x, y, z, u, v, w) that 
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t
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. 

 

Let us transform these expressions to the form 

 

0Uuu  ,  Lxx  ,  0Uvv  , 

 

Lyy  ,  0Uww  ,  Lzz  ,    (6) 

 

Ppp  ,  Ttt  , 

 

where 
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L
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Consider the Navier-Stokes equations 
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It substitutes (6) into equations (7), (8), (9) and (10) and for simplicity, it omits 

the underscores and write in the form. 
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Reducing the momentum equations by 
L

U 2

0 , and the continuity equation by 
L

U 0 , it 

obtains 
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It can introduce the following dimensionless one-term complexes, called 

"similarity numbers": 

 

2

0U

P
Eu


 ,  



0Re
LU

  

 

Eu  is the Euler number, Re  is the Reynolds number. 

And using these dimensionless numbers, it rewrites the momentum equations 

and continuity equation in this form 
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3.6 Incompressible Navier-Stokes equations for curvilinear coordinates 

 

Carrying out numerical simulation for complex areas, the transformation of 

coordinates from the Cartesian to the generalized coordinate system is carried out. So 

the transformation between the Cartesian system ( ),,( zyxx  ) and the curvilinear 

coordinate system ( ),,(   ) occurs using such relations ,..,  xx  and ,.., xx  .. 
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The Jacobian is defined in this form 
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Figure 12 (a) - Curvilinear coordinate system; (b) Cartesian coordinate system. 

 

Now it will be necessary to replace the derivatives with respect zyx ,,  to  ,, , 

then it turns out in this form 
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where 
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Using these expressions, the Navier-Stokes equation can be rewritten in this 

form 
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4. NUMERICAL INVESTIGATION OF THE EFFICIENCY OF HIGH 

PERFORMANCE COMPUTING FOR BACKWARD STEP FLOW 

PROBLEMS 

 

4.1 Problem statement 

 

Construction is one of the fastest growing areas today. But the natural 

aerodynamics between buildings is always taken into account. To do this, you must 

first take into account ventilation before the start of the project itself. One of the 

optimal solutions is to build a mathematical model of the air flow. Below are 

numerical solutions for the wind flow around architectural obstacles, taking into 

account vertical buoyancy forces. For the calculation, the Navier-Stokes equation, the 

control volume method for approximation and the projection method for the 

numerical solution were used. The Jacobi method for each time step by iterative 

method was used for the Poisson equation satisfying the discrete continuity equation. 

The test problem was solved to check the correctness of the mathematical model and 

the numerical algorithm. The results of other authors in the numerical form were used 

for comparison with the numerical solutions of the reverse flow step with vertical 

buoyancy forces. For parallelization of the numerical algorithm, 1D, 2D and 3D 

decompositions were used. Having made a theoretical analysis of the efficiency for 

the above types of decomposition, the best method of domain decomposition was 

determined. And also real computational experiments were carried out for this 

problem. Moreover, the resulting numerical algorithm with the best domain 

decomposition method and mathematical model can be widely used for various 

complex flows with vertical buoyancy forces.The increased pace of construction in 

modern large cities and, in particular, Almaty, leads to a tightening of architectural 

structures. Due to the increase in the population of cities and to save space, mostly 

high-rise buildings are being built. As a consequence, this entails such consequences 

as a violation of the natural aerodynamics of the city, which in turn leads to increased 

gas contamination of the city, the accumulation of heavy metals in the lower 

atmosphere, and to the violation of the local climate. The building codes and norms 

currently used in the construction and design of buildings do not contain aerodynamic 

criteria and coefficients indicating the optimal distance between buildings of different 

heights. When determining these standards, various natural and climatic features are 

taken into account, such as wind loads, insolation, etc. Fire safety requirements are 

also taken into account. However, the above-mentioned documents do not take into 

account the factor of natural aerodynamics of space between neighboring buildings. 

The distance between buildings and structures is considered to be the distance 

between the outer walls or other structures. As a result, when designing, the distances 

between building objects are laid, which can not provide free movement of the wind 

vortex, which leads to a disturbance of the natural air flow. In this thesis, a model of 

aerodynamics between two high-rise buildings is considered. Parameters such as the 

optimal distance between two buildings, climate change are taken into account in this 

mathematical model. Stream splitting with sudden geometry expansion or subsequent 
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reconnection is quite common in many technical streams. The separation zone and 

flow recirculation has a significant impact on the performance of heat exchange 

devices, such as cooling devices in electrical engineering, cooling channels for 

turbine blades, combustion chambers, and many other heat exchange surfaces that 

occur in equipment. There are many works without taking into account the forces of 

buoyancy, which are devoted to the movement of fluid with separation and 

reconnection of flows. Nevertheless, this process is very important, which is 

confirmed in various works. For example, the study of flows with separation zones 

and their development of experimental and theoretical methods [37-45, 119, 122, 

123, 125]. As well as construction equipment [37-39]. Isothermal flows in fluid flows 

are considered in [46-48]. Such as Aung [49, 50], Aung et al. [51], Aung and Worku 

[52], Sparrow et al. [53, 54] and Vorobey and Chuck [55] also investigated heat 

transfer in flows. However, the heat transfer characteristics and the buoyant force on 

the streamlined flow are not taken into account. At low speed and with a large 

temperature difference, these effects are significantly noticeable. Moreover, the finite 

element method was studied when applied to a two-dimensional square resonator 

with different heater positions and sizes [62]. In turn, the same finite volume method 

was used by Oztop and Abu-Nada [63] to numerically study convection in 

rectangular shells partially heated from the side wall. The paper also shows the 

influence of buoyant forces on the characteristics of the flow and heat transfer in 

individual flows. Figure 13 shows the numerical results for a laminar mixed-

convective air flow (Pr=0.7) in a vertical two-dimensional channel with a reverse step 

to preserve the buoyancy effect. The buoyancy force affects different parameters. Of 

great interest are the distributions of velocity and temperature, ligation lengths and 

coefficients of friction shown to demonstrate the effect of the buoyancy force.  
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Figure 13 - Schematic representation of the backward-facing step flows. 

 

4.2 Mathematical Formulation of the Problem 

 

Figure 13 shows a two-dimensional laminar convective flow in a vertical channel 

with a sudden expansion behind a backward ledge of height s. A constant temperature 

similar to the intake air temperature T0 exists permanently on a straight duct wall. Tw 

desired heating temperature for the stepped wall below the stage, constant 

temperature. The upper part of the stepped wall and the reverse side are taken as the 

adiabatic surface. xi input length and xe output lower channel length have the 

corresponding dimensions. Despite the assumption that these lengths are infinite, the 

length limit is Le = xe + xi. H = h + s is the height of the large area below the stage, 

while the smaller area is just height. Moving up the channel, the air has an average 

speed u0 and a constant temperature T0. The gravitational force g is directed 

vertically downward. The Boussinex approximation and the assumption of constant 

properties were used to describe this physical problem. This system of equations in 

an unenclosed form can be written as: 
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The dimensionless parameters in the equations given above are defined by the 

formula: 

 

0uuU  ,   0uV  ,   sxX  ,  syY  , 

 

   00 TTTT w  ,   
2

00upP  , 

 

Pr ,  su0Re  ,   
23

0  sTTgGr w  . 

 

Where α – the temperature diffusion, ν – the kinematic viscosity, and β – the thermal 

expansion coefficient are estimated at the film temperature Tf=(T0+Tw)/2 (Figure 14). 

 

Boundary conditions: 

 

(a) Inlet conditions: At the point iXX   and sHY 1 : 0uuU i , 0V , 

0 , 
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x

p
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where iu  is the local distribution of velocities at the inlet, which is assumed to 

have a parabolic profile and 0uu i  an average inlet velocity, that is, given by formula 

 

  22

0 )()(6 sHHsysHyuu i   
 

(b) Outlet conditions: At the point eXX   and sHY 0 : 0 XU , 
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(c) on the top wall: At the point sHY /  and ei XXX  : 0U , 0V , 0 , 

0
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(d) on the wall of the upper stage: At the point 1Y  and 0 XX i : 0U , 

0V , 0 Y , 0




y

p . 

 

(e) on the wall of the lower stage: At point 0X  and 10 Y : 0U , 0V , 

0 X , 0
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x
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(f) on the wall below the stage: At the point 0Y  and eXX 0 : 0U , 0V , 

1 , 0




y

p . 

 

The last term on the right-hand side of equation (16) is the contribution of the 

buoyancy force. The length of the downstream flow from the simulation area was 

chosen to be 70 steps (
eX =70). The upper length of the design area was chosen to be 

5 steps (i.e. 
iX =5), and the velocity profile at the input area was set as parabolic 

profile, like   22

0 )()(6 sHHsysHyuui  , and temperature was chosen as 

uniform 0T . 

 

 
Figure 14 - Boundary conditions. 

 

4.3 Numerical algorithms 

 

The projection method [57-60] was used to solve this system of equations 

numerically. The finite volume method [56-59] was used for approximation. At the 

first stage, it is assumed that momentum transfer occurs only due to convection and 

diffusion, and the intermediate velocity field is calculated by the fourth-order Runge-

Kutta method [56-59]. At the second stage, according to the found intermediate 

velocity field, there is a pressure field. The Poisson equation for the pressure field is 
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solved by the Jacobi method. At the third stage, it is assumed that the transfer is 

carried out only due to the pressure gradient. At the fourth stage, the equations for 

temperature are calculated by the fourth-order Runge-Kutta method [56-59].  
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4.4 Parallelization algorithm 

 

For numerical simulation was constructed a computational mesh by using the 

PointWise software. The problem was launched on the ITFS-MKM software using a 

high-performance computing. The equations are approximated by the finite volume 

method (FVM) and used collocated grid, because it makes parallelization of 

numerical algorithm simple and efficient to use domain decomposition method. For 

pressure velocity coupling is used Rhie-Chow interpolation. This relation can 

interpolate the surface pressure of the cell. The scheme of the central pressure 

difference was built on the basis of the above pressure. In turn, this scheme makes it 

possible to avoid the checkerboard effect, and also connects adjacent pressures. a 

first-order upstream flow scheme was used for convective flow. 1D, 2D and 3D 

decompositions were used to fully parallelize this numerical algorithm. Geometric 

partitioning of the computational grid was chosen as the main approach. Given this, it 

can be said that there are three ways to exchange the values of the grid function on 

the computing nodes of a one-dimensional, two-dimensional and three-dimensional 

grid. After the domain decomposition stage, when parallel algorithms are built on 

separate blocks, a transition is made to the relationships between the blocks, the 

simulations on which will be executed in parallel on each processor. For this purpose, 

a numerical solution of the equation system was used for an explicit scheme, since 

this scheme is very efficiently parallelized. In order to use the domain decomposition 

method as a parallelization method, this algorithm uses the boundary nodes of each 

subdomain in which it is necessary to know the value of the grid function that borders 

on the neighboring elements of the processor. To achieve this goal, at each compute 

node, ghost points store values from neighboring computational nodes, and organize 

the transfer of these boundary values necessary to ensure homogeneity of calculations 

for explicit formulas [61]. 

The procedures of the MPI library [61] were used for data transfer. 
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Some theoretical analysis was carried out to determine the effectiveness of 

different decompositions. For this, Tcalc was taken as the sequential program time 

divided by the number of processors plus the transfer time Tp = Trast/r + Tcom. 

While transfers for various domain decomposition methods can be roughly expressed 

in terms of throughput [59, 61]: 

 

22 21 xNtT send
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com   
 

2/122 42 pxNtT send

D

com           (19) 

 
3/223 62 pxNtT send

D

com   
 

where N – the number of nodes in the computational mesh, p - the number of 

processors (cores), sendt  – the time of sending one element (number). It should be 

noted that for different decomposition methods, the data transmission cost can be 

represented as )(2 21 pxkNtT send

D

com   in accordance with the formula (19), where k(p) is 

the proportionality coefficient, which depends on the domain decomposition method 

and the number of processing elements used [59, 61]. At the first stage, one common 

program was used, the size of the array from start to run did not change, and each 

element of the processor was numbered by an array of elements, starting from zero. 

For the test simulation well known problem – 3D cavity flow was used. Nevertheless, 

despite the fact that theoretical analysis showed that 3D decomposition gives the best 

parallelization option (Figure 15), judging by the computational experiments, it can 

be said that the best results were obtained using 2D decomposition, when the number 

of processes varies from 25 to 144 (Figure 15) [59, 61]. 

Moreover, after a preliminary theoretical analysis of the graphs, the following 

characteristics can be given. If communication time is not taken into account, the 

simulation time should be approximately the same for the same number of processors 

and decrease by Tcalc/p. 

In fact, judging by the calculated data, the use of 2D decomposition with 

different computational grids gives the minimum cost of modeling and cost graphs 

are much higher, depending on the simulation time, on several processors taken with 

Tcalc/p [59, 61]. 

To substantiate these results, it is necessary not to forget the assumptions that 

were made in the preliminary theoretical analysis of the effectiveness for this task. 

The first assumption: regardless of the distribution of data over the elements of the 

processor, the same amount of computational load is performed. This assumption 

should lead to the same time costs. The second assumption is that the time taken to 

interprocessor transfer of any degree of the same amount of data does not depend on 

their choice of memory. For a deeper understanding, the following sets of 

computational simulation tests were carried out. For evaluation, the sequence of the 

first approach was considered, when the program is executed in a single-processor 
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version and, thus, models various methods of data decomposition in the geometric 

domain with the same amount of computation performed by each processor [59, 61]. 

 

4.5 Results of numerical calculation 

 

On Figure 13 shows the geometric parameters: channel length L=75, channel 

height H=2, step height S=1. Dimensionless numbers equal to Re=50, Pr=0.7, 

Gr=19.1 [45] were used in the numerical results. 
 

 

 

Figure 15 - Speed-up for various domain decomposition methods of the 

computational domain. 

 

Comparison of numerical data with data from Lin et al. [45] at the point x/xf=0.5, 

where xf=2.91 is shown in Figure 16 for the longitudinal velocity profile. Whereas 

comparison of temperature profiles with numerical data from Lin et al. [45] at the 
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point x/xf=0.5, where xf=2.91 is shown in Figure 17. Judging by the figures, it can be 

said that there is a similarity between the results of this work and those of Lin et al. 

[45]. Moreover, in Figure 18 it can be seen the streamlines and the contour of the 

horizontal velocity for the dimensionless numbers Re=50, Pr=0.7 and Gr=19.1. With 

the same dimensionless quantities in Figure 20 shows the temperature profile. For a 

better understanding of this process, from Figure 18, 19 and 20 one can see the 

development of a reverse stepwise flow with a vertical buoyancy force: the origin and 

development of the flow reconnection region, taking into account the buoyancy 

forces. 

 

 
Figure 16 - Velocity profile with vertical buoyancy forces for dimensionless 

number Re = 50, ΔT = 1 oC, x/xf = 0.5, where xf = 2.91. 
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Figure 17 - Temperature profile with vertical buoyancy forces for dimensionless 

number Re = 50, ΔT = 1 oC, x/xf = 0.5, where xf = 2.91. 

 

 
Figure 18 - The contour of the horizontal velocity component with streamlines 

for dimensionless numbers Re=50, Pr=0.7 and Gr=19.1. 
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Figure 19 - The contour of the vertical velocity component for dimensionless 

numbers Re=50, Pr=0.7 and Gr=19.1. 

 
Figure 20 - Temperature contour for dimensionless numbers Re=50, Pr=0.7 

and Gr=19.1. 

 

4.6 Conclusion 

 

The zone of flow confluence behind the reverse step, taking into account the 

buoyancy forces, was used for numerical studies of the laminar flow. Thus, it was 

possible to obtain some clarification in the internal flow behind the reverse scarp and 

in the processes of reconnection of flows under the influence of temperature effects. 

Moreover, data were obtained for a deep understanding of the appearance of 

secondary zones. For a booming study of reverse stepwise flows, taking into account 

the buoyancy forces [45], the distance from the ledge to the channel boundary is 4 

times greater than the channel height. From the numerical data of the distribution of 

velocities, the zones of formation of the primary reattachment of reverse stepwise 

flows were obtained. Thus, the projection method was used to numerically solve the 

system of Navier-Stokes equations. Moreover, it can be argued that the numerical 

results have a small error. Since they were compared with the dimensionless numbers 
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Re=50, Pr=0.7 and Gr=19.1 by the numerical results of other authors [45]. It was 

obtained by fully parallelizing the numerical algorithm to speed up the process. As 

mentioned earlier, different types of decompositions (1D, 2D and 3D) were used. For 

250 processors or less, 3D domain decomposition does not need as much time as 2D. 

These conclusions were drawn on the basis of the numerical results of the test 

problem of flow in a 3D resonator, in which the decomposition method of 1D, 2D, 

and 3D domains was used. In theory, more time-consuming work is required for the 

decomposition of the subject area. But for a given scale of the problem, a 2D 

decomposition of the subject area is sufficient. That’s why for backward-facing step 

flow with vertical buoyancy force is used 2D domain decomposition. It should also 

be noted that setting the boundary conditions is an important process. In the future, 

this mathematical model and a parallel numerical algorithm can be applied to various 

complex flows taking into account the buoyancy forces. 
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5. NUMERICAL INVESTIGATION OF THE EFFICIENCY OF HIGH-

PERFORMANCE COMPUTING USING HYBRID PARALLEL 

ALGORITHMS FOR AIRFLOW PROBLEMS IN A COMPLEX NASAL 

REGION 

 

The current trend in the development of high-performance computers opens up 

new opportunities for developing highly effective methods for modeling complex 

problems using multi-level decomposition and hierarchical parallelization of 

computations. For most real physical processes with a large computational grid this 

approach is the only practical way to create an adequate computing model of control 

objects. In addition, traditional serial computers and computational schemes have 

come to their technological limit. At the same time, a technological breakthrough in 

the field of creating means for interprocessor and intercomputer communications 

makes it possible to realize effective control in the distribution of computations for 

various components by an integrated computer, which in turn is one of the key 

properties of parallelism. Through the nasal cavity there is a primary recognition of 

odors, through it the air is breathed, which passes into the alveolar state (it heats there 

to physiologically normal temperature and is completely saturated with water vapor). 

They serve as regulators of all air circulation, create a normal air temperature and are 

completely saturated with water vapor, cleaned and disinfected. Normally, the airflow 

passes through the nose at a speed of 6 L/min, this figure can be increased to 10 

L/min. However, the nasal cavity depending on the cause of occurrence has 

curvatures and can be divided as: Physiological Compensatory Traumatic. With the 

aforementioned character of curvature, they negatively affect primarily the difficulty 

of breathing. Nasal breathing is very important, a systemic part of our body’s vital 

activity and any of its disturbances sooner or later cause negative consequences for 

the human body. The main method of eliminating the curvature of the nasal cavity is 

a surgical operation—septoplasty. However, it should be noted that the success of a 

surgical operation at the best does not exceed 80%, which leads to a repeated surgical 

operation. And also the surgical operation will depend on the experience and skill of 

the surgeon. Naturally, to increase the percentage of success of a operation, it will be 

necessary to accurately make nasal cavity corrections. Before the surgical 

intervention due to X-ray images it is possible to evaluate the nature of the curvature 

and with the help of numerical modeling it will be possible to correct and optimize 

the nasal cavity in advance. Knowing the preliminary accurate correction of the nasal 

sinus, the surgeon can increase the percentage of success of the operation that will 

accordingly reduce the percentage of the reoperation [124]. 

The nasal cavity balances the inhaled air with the internal state of the body with 

surprising efficiency. In the papers of Cole [64], Inglessted [65] and Webb [66], it 

was generally agreed that the inhaled air through the nasal cavity reaches up to the 

alveolar state (completely saturated with water vapor and at normal body 

temperature) by the time it reaches the pharynx. And it practically does not depend on 

a condition of ambient air which has arrived through nostrils. These results were also 

obtained in the paper of Farley and Patel [67] who collected data in natural conditions 
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with air temperature readings along the upper respiratory tract, as well as Hannah and 

Scherer [68], reflecting measurements of local mass transfer coefficients on the 

gypsum model the human upper respiratory tract. Nevertheless, McFadden [69] noted 

that the conclusions are valid for quiet breathing, in some circumstances at high 

ventilation levels, conditioning of additional air should occur in the intrathoracic 

airways in order to completely determine the inhaled air in the alveolar state [124]. 

Numerous studies have been aimed at assessing the hydration and temperature 

regulation of the nasal cavity. However, mathematical models were based on 

axisymmetric tubes or occupied quasistationary flows [70]. As a rule, these studies 

confirmed the opinion that under normal conditions there is enough time for heating 

and humidifying air in the nasal cavity. In addition, medications as well as surgical 

procedures are being used with increasing speed to restore the structure and functions 

of the nasal cavity [71]. For example, aromatic inhalations are used to improve 

airflow and to reduce congestion, as well as rhinoplasty procedures are used to 

overcome trauma or aesthetic deformities. These artificial interventions cause local 

changes, and can affect the efficiency of transport phenomena of air. However, 

precise intranasal characteristics and distribution of transport phenomena are not yet 

known even for a normal (or healthy) state [72-76, 117, 118, 120, 124, 126]. 

Experimental examination of the nasal cavity is practically impossible, due to 

the complex internal structure and dimensions, i.e. The introduction of any measuring 

device or probe causes additional disturbance of the flow. Therefore, mathematical 

modeling is one of the only approaches for studying the flow of air in the nasal cavity 

[124]. 

 

5.1 Statement of the physical problem 

 

Air flow that passes through the structure of the nasal cavity has a very difficult 

path. The complex structure of the nasal cavity and complete three-dimensional 

analysis of the steam flow, heat transfer in the inner part of the nasal mucosa requires 

significant computational resources that prevent a systematic analysis of the relevant 

factors (Figure 21) [124]. 

Having the available computational resources, a complex study of transport 

mechanisms was carried out in two-dimensional form, through the cross sections of 

the nose [124]. 

In addition, the following assumptions are made for numerical modeling [124]: 

∙ The walls of the nasal cavity and nasal concha are assumed to be immovably 

hard. 

∙ The air flow in the nasal cavity is considered as a laminar flow, and the air as 

an incompressible medium (since the Reynolds and Mach numbers are very small). 

∙ The velocities on the walls of the cavity are taken as zero (u = 0, v = 0).  

The walls of the nasal cavity are considered fully saturated with water vapor and 

the temperature near the body due to the moist mucous layer reaches the vascular 

vessels of the nasal wall. 
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Figure 21 - Nose model with a longitudinal section. 

 

Thin features of the nose do not have exact dimensions, because there are differ- 

ences in the structure of the nasal cavity in healthy people, so it is almost impossible 

to determine the exact model of a “normal nose”. Thus, a simplified model of the 

nose is developed, where the main essential signs of the nasal cavity are revealed. 

The dimensions are taken from the averaged data of the human nasal cavity (Figure 

22). The physical area of the problem is the second cross-section (Figure 22c “-2-”), 

which is important for the study, because it is an area where a significant proportion 

of the air flow takes place, and also it has a complex structure, through which the 

basic functions of the nasal cavity are performed [124]. 

The mathematical model is constructed on the basis of the Navier-Stokes 

equations, including the continuity equation, the momentum equation, and also the 

energy (temperature) equation also relative humidity equations are used [77-79, 124]. 

 

,0U  

 

UvpUU
t

U 21
)( 





 , 

 

T
c

k
TU

t

T

p

2)( 




 , 

 

CDCU
t

C 2)( 




 

 
where U  is the velocity vector, t  is the time, p  is the pressure, v  is the 

kinematic viscosity, T  is the temperature, C   is the humidity, pc  is the specific heat 

of the medium at constant pressure, k  is the coefficient of thermal conductivity,   is 

the density, D  is the coefficient of molecular diffusion. 
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Figure 22 - Simplified nose model: a longitudinal section, b coronary section, c cross 

sections at height h = 3, 13, 17, 20, 26, 33, 40 mm from the bottom point of the nasal 

cavity, d perspective view. 

 

The instantaneous velocity at the inlet in each cross section is assumed to have a 

parabolic profile with a maximum velocity (UM)max that varies during the breathing 

cycle. In the paper of Girardin et al. [80] measurements were made using laser 

anemometry in the model of the human nose and it was found that the field flow 

basically have layered parabolic velocity profiles in any cross section. At rest, a 

normal adult breathes a volume about VT = 0.5 L (inhaling and exhaling) once a 

minute at an average flow rate of about 0.125 L/s to each nostril. Accordingly, the 

instantaneous velocity distribution at the input UM in the direction is given in the 

following form [124]: 
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The inlet boundary conditions for the temperature and relative humidity of the 

external air are given in the following form: 

 

CyxtTin  25),0,( , 
3

2 /0047.0),0,( mOHkgyxtCin   
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On the walls of the nasal cavity and nasal concha: 

 

,0),,( yxtuwall  ,0),,( yxtvwall  CyxtTwall  37),,( , 
3

2 /0438.0),,( mOHkgyxtCin   
 

The initial conditions are given in this form: 

 

,0)0(0 tu  .32)0(0 CtT  , ./0235.0)0( 3

20 mOHkgtC   

 

5.2 Numerical algorithm 

 

The projection method is used for a numerical solution of this system of 

equations [81, 82]. Equations are discretized by the finite volume method [81, 83, 

84]. At the first stage it is assumed that the transfer of the momentum is carried out 

only through convection and diffusion, and an intermediate velocity field is calculated 

by the fourth-step Runge-Kutta method [79]. In the second stage, according to the 

found intermediate velocity field, there is a pressure field. The Poisson equation for 

the pressure field is solved by the Jacobi method. Then at the third stage, it is 

assumed that the transfer is carried out only due to the pressure gradient. Further at 

the fourth stage, the equations for the temperature are calculated by the fourth-step 

Runge- Kutta method. And in finally, equations for the relative humidity are 

calculated, and also solved by the fourth-step Runge-Kutta method [72, 73, 79, 124]. 

 

5.3 Parallel implementation 

 

Well known three dimensional lid-driven cavity problem is used to check 

various geometric decompositions method. A computational grid was constructed 

using the Pointwise software to carry out numerical simulation. The problem was 

launched on the ITFS-MKM software complex using a high-performance cluster. A 

cluster system (Intel(R) Xeon(R) CPU E5645 2.40 GHz CPU, 26 nodes with two 

processors per node and totally number of cores are 312, 624 GB RAM) is used to 

decrease CPU time. This numerical algorithm is completely parallelized using 

various geometric decompositions (1D, 2D and 3D). Geometric partitioning of the 

computational grid is chosen as the main approach of parallelization. In this case, 

there are three different ways of exchanging the values of the grid function on the 

computational nodes of a one-dimensional, two-dimensional, and three-dimensional 

grid. After the decomposition stage, when parallel algorithms are built on separate 

blocks, it was proceed to the relations between the blocks, the calculations on which 

will be performed in parallel on each processor. For this purpose, a numerical 

solution of the equation system was used for an explicit scheme, since this scheme is 

very well parallelized. In order to use the decomposition method as a parallelization 

method, this algorithm uses the boundary nodes of each subdomain in which it is 

necessary to know the value of the grid function that borders on the neighboring 

elements of the processor. To achieve this goal, at each computational node, fictitious 
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points store values from neighboring computational nodes, and organize the transfer 

of these boundary values necessary to ensure homogeneity of calculations for explicit 

formulas (Figure 23) [124]. 

Data transmission is performed using the procedures of the MPI library [61, 

124]. 

By doing preliminary theoretical analysis of the effectiveness of various 

methods of the computational domain decomposition for this problem, it will be 

estimated that the time of the parallel program as the time of the sequential program 

divided by the number of processors used Tcalc, plus the transmission time Tp = 

Tcalc∕p + Tcom. While transmissions for different decomposition methods can be 

approximately expressed through bandwidth [124]: 
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com           (20) 
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where 
3N  - the number of nodes in the computational grid, p - the number of 

processors (cores), sendt  - the time of sending one element (number) [124]. 

It should be noted that for different decomposition methods, the data 

transmission cost can be represented as )(2 21 pxkNtT send

D

com   in accordance with the 

formula (20), where )(pk  is the proportionality coefficient, depending on the 

decomposition method and the number of processing elements used [124]. 

Table 2 shows numerical values )(pk . It can be seen that if p> 5 and using 3D 

decomposition this algorithm is more efficient, and for p> 11 and using 3D 

decomposition, the necessary time of sending between the processors of the value of 

the function 
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 in a node with a smaller number of elements, it will 

be expected that the time spent on data transmission will be minimal (Figures 24-26) 

[124]. 
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Figure 23 - Different methods of decomposition. Schemes of mechanisms for 

the exchange of 1D, 2D and 3D decompositions. 
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Table 2. Dependence of the proportionality )(pk  coefficient on the number of 

processor elements and the decomposition method. 
Number of 

processes 

3 4 5 6 10 11 12 16 60 120 250 

1D 

Decomposition 

2 2 2 2 2 2 2 2 2 2 2 

2D 

Decomposition 

2,31 2,00 1,79 1,63 1,26 1,20 1,15 1,00 0,51 0,36 0,25 

3D 

Decomposition 

2,88 2,38 2,05 1,82 1,29 1,21 1,14 0.94 0,39 0,24 0,15 

 

 

 

Figure 24 - Speed-up for various methods of decomposition of the 

computational domain. 
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Figure 25 - Efficiency for various methods of decomposition of the 

computational domain. 
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Figure 26 - Time of calculation without taking into account the cost of data 

transfer for different decomposition methods. 

 

Comparison of the results of parallelization by simple MPI procedures and the hybrid 

OPENMP/MPI model of the Fourier method for solving the Poisson equation for 

calculating the pressure field is presented in Figure 27. The problem was solved with 

the distribution of the computational rectangular grid into computational subdomains 

for each processor. The exchange of the required calculated values between the 

processors is implemented using the MPI library for a simple MPI procedure and the 

MPI and OPENMP libraries for the OPENMP/MPI hybrid model. 

All calculations were carried out on cluster systems T-Cluster and URSA at the 

Faculty of Mechanics and Mathematics, al-Farabi Kazakh National University using 
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128 × 128 × 128 and 256 × 256 × 256 computational grids. Computational 

experiments were conducted using up to 250 processors. The results of the 

computational experiment showed the presence of a good speed in solving problems 

of this class. They are mainly focused on additional transmissions and time 

calculations for various decomposition methods [124]. 

 

 
Figure 27 - Dependence of acceleration on the number of processors used for simple 

MPI and hybrid OPENMP/MPI model. 

 

At the first stage, one common program was used, the size of the array from start 

to run did not change, and each element of the processor is numbered by an array of 

elements, starting from zero. Despite the fact that according to the theoretical analysis 

of 3D decomposition is the best option for parallelization (Figure 24), computational 

experiments showed that the best results were achieved with 2D decomposition when 

the number of processes varies from 25 to 144 (Figure 24) [124]. 

Based on a preliminary theoretical analysis of the graphs, the following 

character can be noted. The calculation time without the cost of inter-processor 

communications with different decomposition methods should be approximately the 

similar for the equal number of processors and shrink by Tcalc∕p. In fact, the 

calculated data (Figure 25) show that using 2D decomposition on various 

computational grids gives a minimal cost for the calculation and the cost graphs are 

significantly higher depend- ing on the computation time on several taken processors 

Tcalc∕p (Figure 26) [124]. 

To explain these results, it is necessary to pay attention to the assumptions made 

in the preliminary theoretical analysis of the effectiveness for this task. First, it was 

assumed that, regardless of the distribution of data per one processor element, the 

same amount of computational work was performed, which should lead to the same 

time expenditure. Secondly, it was assumed that the time spent on interprocessor 

sendings of any degree of the same amount of data does not depend on their choice of 
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memory. In order to understand what is actually happening, the following sets of test 

computational calculations were carried out. For the evaluation, the sequence of the 

first approach was considered, when the program is executed in a version with one 

processor, and thus simulates various ways of geometric decomposition of data for 

the same amount of calculations performed by each processor [124]. 

 

5.4 Results of numerical calculation 

 

As a result of numerical modeling of the aerodynamics of the human nasal 

cavity, the following data were obtained. Also, to verify this numerical algorithm, the 

calculation data from paper [77] has been used, which describes the profiles of the 

longitudinal component of velocity and temperature in three cross sections: at a 

distance x1=17 mm, x2=49 mm and x3=80 mm from the entrance (Figure 28). For 

the numerical simulation, the corresponding parameters for air constants were used: 

𝜌=1.12 kg/m3, 𝜇=1.9× 10−5 kg/ms, cp=1005.5 J/kgK, k=0.0268 W/mK, 

D=2.6×10−5 m2/s [124]. 

Figure 29 shows the comparison of profiles for x1, x2 and x3 the longitudinal 

velocity component of the calculation results and data from the article Naftali et al. 

[77]. Figure 30 shows a comparison of temperature profiles for cross sections x1, x2 

and x3. Figure 31 shows the relative humidity profiles for cross sections x1, x2 and 

x3. In all the figures, numerical results were shown to be dimensionless [124]. 

It can be seen from the figures that when passing through narrow areas of the 

nasal cavity air is heated downstream, and relative humidity also increases. And also 

from Figure 30 it can be noted that behind the nasal septum the temperature increases 

and the air temperature is heated to the alveolar state when reaching to the 

nasopharynx. And at low ambient temperatures, relative humidity plays a very 

important role. Figure 32 shows the longitudinal velocity component in the cross 

section for time t=1 s. Figure 33 shows the transverse velocity component in the cross 

section for time t=1 s. It can be seen from the figures that vortex currents appearing 

from the nasal conchas, which play an important role in the process of heating the air. 

Figures 34 and 35 show the temperature components, and the relative humidity in the 

calculated area for time t = 1 s. It can be seen from the figures that when passing 

through narrow areas of the nasal cavity air is heated downstream, and relative 

humidity also increases [124]. 

 
Figure 28 - Evaluation in three locations for temperature and velocity for a cross 

section. 
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Figure 29 - Comparison of the profile of the velocity component for the cross 

sections 1x = 17 mm, 1x = 49 mm and 1x = 80 mm with the results of calculations from 

[77]. 
 

  

 

Figure 30 - Comparison of temperature profiles for cross sections 1x = 17 mm, 

1x = 49 mm and 1x = 80 mm with the results of calculations from [77]. 
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Figure 31 - Relative humidity profiles for sections 1x = 17 mm, 1x = 49 mm and 

1x = 80 mm. 
 

 
Figure 32 – Longitudinal components of the flow velocity for a cross section. 
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Figure 33 – Transverse flow velocity components for a cross section. 

 

 
Figure 34 – Flow temperature for cross section. 

 

 
Figure 35 – Relative flow humidity for cross section. 
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5.5 Statement of the 3D Physical Problem 

 

To approximate the obtained numerical results to the real result, it is necessary 

to use three-dimensional models of the nasal cavity, since the heating and 

humidification of the inhaled air strongly depends on the structure of the walls of the 

nasal cavity. Therefore, computational models must include more realistic 3D 

geometry descriptions in order to determine the effect of complex geometry on 

various characteristics such as speed, heat and mass transfer, and relative humidity 

[125]. 

In [79] (Hahn et al., 1993), experimental measurements of air flow in a 

prototype nose were carried out using a hot wire anemometer in a large-scale physical 

model of the nasal cavity, built on the basis of computed tomography of the right 

nasal cavity of a healthy man. The experiments used different breathing rates 

equivalent to 180 ml/s, 560 ml/s and 1100 ml/s in a real human nose, which 

corresponds to calm breathing, medium inhalation and intense inhalation, 

respectively. Figure 36 shows the experimental setup and the relative position of the 

measurement sites on three slices that were used to verify the numerical values 

obtained [125]. 
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where U  is the velocity vector, t  is the time, p  is the pressure, v  is the 

kinematic viscosity,   is the density. 

The computational model included the region from the anterior tip of the nose to 

the posterior end of the turbinate. As shown in Figure 36, the nasopharynx was 

dilated to fit the experimental setup [125]. 

The geometry of the human nasal cavity was created by aligning and processing 

40 computed tomography (CT) scans of the airways of a healthy man. Using the 

AutoCAD software package, intermediate geometric shapes of the nasal cavity were 

created, which correspond to the average physical parameters of the human nasal 

cavity. From these idealized 2-D images (Figure 37), a 3-D complex human nasal 

cavity was created. The locations of the anemometers in the study area are shown in 

Figure 38 [125]. 

As can be seen from Figure 38, on sections 1 and 2, 4 lines were located to 

measure the speed at these points of the section. The computational grid of the area 

under study is shown in Figure 39. The final computational grid of the nasal cavity 

consisted of 6,876,463 elements (Figure 39). Comparisons of the velocity profiles 

with experimental data [79] (Hahn et al., 1993) on lines 1-4 are shown in Figure 40 

[125]. 
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Velocity profiles were dimensioned according to the value of the local 

maximum velocity. As shown in Figure 40, the predictions of the laminar model are 

in good agreement with experimental data [79] (Hahn et al., 1993). The directions of 

the air flow in the nasal cavity and two-dimensional contours in sections 1-3 are 

shown in Figures 41 and 42. As expected, in the narrow channels of the nasal cavity 

the air flow accelerated and reached a maximum value of 3.33 m/s (Figure 41). You 

can also notice that due to the deep conchas of the nasal cavity, vortices arise, which 

in the subsequent can have a good effect on heat and mass transfer. The two-

dimensional velocity contours presented in Figure 42 confirm the statements about 

the acceleration of the air flow due to the narrowing of the turbinates and, as a 

consequence, the occurrence of vortices [125]. 

Despite some irregularities in the flux field profiles, it can be seen that the 

proposed model achieves good agreement with the experimental results [79] (Hahn et 

al., 1993) under calm breathing conditions. It can also be noted that the obtained 

numerical results show values much closer to the experimental data [79] (Hahn et al., 

1993) than the numerical results obtained in [86] (Li et al., 2017). However, the 

obtained inaccuracies in this work can be explained by the fact that the fine features 

of the nasal cavity cannot be accurately measured due to the limited resolution of 

existing imaging methods. Accordingly, a model similar to the nasal cavity was 

developed (Figure 36), in which the dimensions are taken from the average data of 

the human nasal cavities. The model used allows a comprehensive study of a large 

number of functions of the nasal cavity in relation to the structural components of the 

nasal cavity and the corresponding heat and mass transfer. It should be noted that in 

real conditions the walls of the nose may not be the same or equal to the alveolar 

conditions, especially during exercise, and future models should refine these 

assumptions [125]. 
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Figure 36 - Physical geometry of the study area (all dimensions in mm). 
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Figure 37 - Digitized 2D sections of computed tomography (CT) images of the 

human nasal cavity. 

 

 
Figure 38 - Locations of line 1-4 on sections 1 and 2. 
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Figure 39 - Computational grid of a complex human nasal cavity. 
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Figure 40 - Comparison of the profiles of the horizontal velocity component on lines 

1-4 with the numerical results of other authors [86] (Li et al., 2017) and experimental 

data [79] (Hahn et al., 1993). 
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Figure 41 - Longitudinal components of the air flow velocity with delineation of 

streamlines in the nasal cavity. 
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Figure 42 - Two-dimensional contours of the longitudinal components of the cross-

sectional velocity 1-3. 

 

5.6 Numerical study of heating and humidification of air in the human nose 

 

The flow of air in the human nasal cavity plays an important role in many 

physiological functions of the nose, such as heating and humidifying the air flow, and 

others. In this section, the proposed model is used to predict airflow and related 

transport phenomena in the human nasal cavities [125]. 

It is assumed that the flow of heat and water vapor is released from the inside of 

the nasal mucosa. Normal respiration was chosen as a reference base, and then the 

effect of changes in ambient temperature was investigated. This study serves as a 

basis for a better understanding of nasal transport phenomena (heat, mass), which are 

the main functions of the nose [125]. 
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where U  is the velocity vector, t  is the time, p  is the pressure, v  is the 

kinematic viscosity, T  is the temperature, C  is the humidity, pc  is the specific heat of 

the medium at constant pressure, k  is the coefficient of thermal conductivity,   is 

the density, D  is the coefficient of molecular diffusion. 

The study area was identical to the second test problem in Figure 36. It is 

believed that the walls of the nasal cavity are completely saturated with water vapor 

and, due to the moist mucous layer and the rich underlying vascular bed, the 

temperature values are close to body temperature. The temperature value on the 

stacks of the nose is taken equal to 37°C, the humidity on the walls is taken to be 

100%. The environmental conditions were taken as in the work of Naftali et al. [77], 

the temperature of the inhaled air is 25°C and the relative humidity is 20%. Figure 43 

shows two-dimensional and three-dimensional distributions of the longitudinal 

components of the flow velocity for various sections (sections 1-3) with the given 

conditions. From the results obtained, it can be seen that the global behavior of the air 

flow has not been changed, but, however, the maximum longitudinal velocity has 

increased to 3.47 m/s (Figure 43). The increase in the maximum longitudinal velocity 

was influenced by the conditions of heating and humidification on the walls of the 

nasal cavity. Figure 44 shows the process of heating the inhaled air for different 

sections. From the results in Figure 44, it can be seen that the inhaled air in section 3 

heats up, and the air temperature is 34-37°C. The concentration of water vapor at 3 

cross-section reaches a value of 0.66-0.99 (Figure 45). This structure of the nasal 

cavity increases the local rate of heat and moisture transfer by narrowing the nasal 

passages for air. These constrictions in the nasal cavities result in turbulence 

downstream [125].  

To investigate the effect of respiration under various temperature and humidity 

environments, several simulations were carried out using the proposed model. To 

simulate heat and mass transfer in the nasal cavity for normal inhalation in extreme 

environments, three modes were chosen: at an ambient temperature of 40°C and 

humidity on the walls of the nasal cavity 90%, at an ambient temperature of 5°C and 

humidity on the walls of the nasal cavity 20%, at ambient temperature 5°C and 

humidity on the walls of the nasal cavity 90%. The air velocity in the nasal cavity 

was used the same in all cases, however the transfer process differs depending on the 

conditions. Figures 46-48 show the simulation results at an ambient temperature of 

5°C and a humidity on the walls of the nasal cavity of 20%. As shown in Figure 46, 

at a temperature of 5°C and a humidity of 20%, the maximum speed reached 3.56 

m/s. The temperature of the inhaled air per section 3 ranges from 28-37°C. However, 
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it should be noted that a temperature of 28°C occurs only in a small area, the average 

temperature is 35°C. As shown in Figure 48, the inhaled air with a humidity of 20% 

is humidified with water vapor from 0.62-0.99 until it reaches the nasopharynx. In 

general, the distributions of water vapor are the same with the results from Figure 45 

[125]. 

Figures 49-51 show the results of numerical simulations at an ambient 

temperature of 5°C inhaled air with 90% humidity on the walls of the nasal cavity. 

The flow behavior at 5°C and 90% humidity is the same as in Figure 46. The results 

in Figures 50 and 47 are the same since the conditions for the temperature of the 

inhaled air are the same. From the results of Figure 51 it can be seen that the 

concentration of inhaled air per section 3 is in the range of 0.78-1.0. Figures 52-54 

show the results of numerical simulations at an ambient temperature of 40°C inhaled 

air with a nasal humidity of 90%. At an inspired air temperature of 40°C and a 

humidity of 90%, the maximum flow rate reaches 3.4 m / s. The nasal cavity not only 

heats the inhaled air, but in some critical cases it can also cool it. As shown in Figure 

53, inhaled air at 40°C is cooled to body temperature. The concentration of inhaled 

air passing through cross section 3 is 0.79-1.0, which is a near alveolar condition 

[125]. 

From the above results, it can be concluded that the nasal cavity balances the 

inhaled air with the internal conditions of the body with remarkable efficiency, and is 

practically independent of the state of the surrounding air. As a comparison, the effect 

of external conditions in Figures 55 and 56 shows the profiles of temperature and 

concentration on lines 1-4 from section 1-2 (Figure 38) [125]. 

The results in Figure 55 show the difference in temperature propagation on 

measurement lines 1-4. In all the results, it can be seen that the temperature of the 

inhaled air tends to the conditions of the walls of the nasal cavity, that is, to a body 

temperature of 37°C. As shown in Figure 56, the concentration profiles on the 

measuring lines are the same under the same conditions of humidity of the inhaled 

air. Like the temperature values, the concentration of water vapor also tends to the 

conditions of the walls of the nasal cavity, that is, to a concentration equal to 1.0 

[125]. 

In this work, the realistic geometry of the human nasal cavity was used, but, 

however, it should be borne in mind that this geometry is not universal, since each 

person has its own structure of the turbinate. However, the created three-dimensional 

geometry of the human nasal cavity can be of immense value as a standard nasal 

replica for testing various conditions of ambient temperature, relative humidity and 

inhaled air flow rate [125]. 
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Figure 43 - Two-dimensional and three-dimensional distribution of longitudinal 

components of the flow velocity at an ambient temperature of 25 ° C and humidity on 

the walls of the nasal cavity 20% for various sections (sections 1-3). 
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Figure 44 - Two-dimensional and three-dimensional heat distribution at an ambient 

temperature of 25 ° C and humidity on the walls of the nasal cavity 20% for various 

sections (sections 1-3). 
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Figure 45 - Two-dimensional and three-dimensional distributions of concentration at 

an ambient temperature of 25°C and humidity on the walls of the nasal cavity 20% 

for various sections (sections 1-3). 
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Figure 46 - Two-dimensional and three-dimensional distribution of longitudinal 

components of the flow velocity at an ambient temperature of 5 ° C and humidity on 

the walls of the nasal cavity 20% for different sections (sections 1-3). 
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Figure 47 - Two-dimensional and three-dimensional temperature distributions at an 

ambient temperature of 5 ° C and humidity on the walls of the nasal cavity 20% for 

various sections (sections 1-3). 
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Figure 48 - Two-dimensional and three-dimensional concentration distributions at an 

ambient temperature of 5 ° C and humidity on the walls of the nasal cavity 20% for 

various sections (sections 1-3). 
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Figure 49 - Two-dimensional and three-dimensional distributions of longitudinal 

components of the flow velocity at an ambient temperature of 5 ° C and humidity on 

the walls of the nasal cavity 90% for various sections (sections 1-3). 
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Figure 50 - Two-dimensional and three-dimensional temperature distributions at an 

ambient temperature of 5°C and humidity on the walls of the nasal cavity 90% for 

various sections (sections 1-3). 
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Figure 51 - Two-dimensional and three-dimensional concentration distributions at an 

ambient temperature of 5 ° C and humidity on the walls of the nasal cavity 90% for 

various sections (sections 1-3). 
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Figure 52 - Two-dimensional and three-dimensional distributions of longitudinal 

components of the flow velocity at an ambient temperature of 40 ° C and humidity on 

the walls of the nasal cavity 90% for different sections (sections 1-3). 
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Figure 53 - Two-dimensional and three-dimensional temperature distributions at an 

ambient temperature of 40 ° C and humidity on the walls of the nasal cavity 90% for 

various sections (sections 1-3). 
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Figure 54 - Two-dimensional and three-dimensional concentration distributions at an 

ambient temperature of 40 ° C and humidity on the walls of the nasal cavity 90% for 

various sections (sections 1-3). 
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Figure 55 - Comparison of temperature profiles on lines 1-4 under different 

environmental conditions. 
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Figure 56 - Comparison of concentration profiles on lines 1-4 under different 

environmental conditions. 

 

5.7 Hybrid parallel numerical algorithm using dynamic load balancing 
 

The development of technology and the increase in the volume of data in almost 

all areas have given impetus to a new problem. Thus, increasing efficiency and 

processing data in real time has become a key aspect for specialists. The first thing 

that comes to mind is parallel programming. As you know, when a large number of 

processors work simultaneously, this is called a parallel architecture. Moreover, if the 

processors have different characteristics, such a system is called heterogeneous 

(otherwise homogeneous). Variable memory sizes and data rates make it difficult to 
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distribute work efficiently. While with the same capabilities, this task is more 

feasible.  

Long-term use of parallel algorithms to date, a large selection of 

implementations. But the key point is the correct distribution of the load on the 

processors (balancing). Obviously, improper load balancing negatively affects 

performance, thereby increasing execution time. 

It follows from the above that with the help of proper load distribution, 

significant results can be achieved in reducing the processing time for a single 

processor. There are two types of balancing, static and dynamic. In this situation, it is 

more appropriate to use dynamic load balancing, taking into account the different 

capabilities of each processor. 

It is possible to consider two types of balancing application: manual and 

automated. One disadvantage of manually applying balancing is a big waste of time. 

Whereas the big advantage of automated balancing is its simple and fast 

implementation to an already existing parallel algorithm.  

As previously mentioned, there are two types of balancing. Static balancing 

dates back to 1972 (R. L. Graham.) and its main principle is the distribution of 

balancing for tasks immediately before starting work. Sometimes the lack of accurate 

information about the characteristics of processors can be a disadvantage, as it 

requires comparing them with each other. As you know, compilers play an important 

role in a parallel algorithm. And here you can notice another equally important 

drawback - the need to match the task with the processors. This can be circumvented 

by knowing the exact characteristics of the system and by providing independent 

tasks. The situation is aggravated by the fact that with parallel execution it is not 

possible to predict the course of communication, nor the execution itself, and the lack 

of data about the task being performed. Thus, the clear superiority of using dynamic 

load balancing can be emphasized. In dynamic data allocation, assigning tasks 

directly on execution avoids the above problems. 

 

5.8 Parallelization algorithm using dynamic load balancing 

 

Using the full power of the processor due to the correct distribution of the load 

leads to increased efficiency, which is the main goal of dynamic load balancing [96, 

97]. It is well known that even a minimal failure in load distribution can have a 

dramatic effect on the overall picture. Which again emphasizes the importance of 

proper balancing [105]. Assuming that the delay due to imbalance occurs at each 

iteration, one can imagine what the magnitude of the impact on efficiency due to 

synchronization will be. Since the MPI subdomains very often communicate with 

each other [106]. It is also known that delaying even one processor greatly affects the 

overall time and efficiency. Since everyone else is waiting for the belated processor 

to finish executing. At the same time, underutilized processors do not contribute 

enough to increase efficiency, even if the process is executed ahead of schedule.  

Different types of imbalances occur under different circumstances. For example, as 

the workload changes over time, dynamic imbalances occur. Whereas static load 
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distribution leads to both constant and equal imbalance [106]. 

Different parameters can be used in determining the imbalance. For example, 

the percentage of imbalance [107] can be expressed by the formula: 
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tmax - the maximum and tavg - average time, N - the number of parallel processes. 

It should be noted here that a result of 0% corresponds to the absence of imbalance. 

Whereas 100% result is the same if the parallel program was executed by one 

processor. As a result, it can be said that this formula is an indicator of the percentage 

of misuse of resources. As you know, in numerical simulation, the work is divided 

into steps. So here is the idle time of all processors waiting for the completion of the 

slowest one and can be seen as the result of this formula at one-time step. If there is 

the possibility of achieving an ideal balance, then the savings in working time can be 

calculated according to the It=tmax-tavg formula [107]. In addition, IT = N It can be 

used to express the effect of distribution time, which is the maximum indicator of the 

amount of resources spent [106]. 

Having many DLB schemes in science, one can say that the choice depends on 

several factors: the type of grid, its partitioning, and the numerical method. In short, it 

is necessary to first determine the amount of load to be transferred, then the 

processor, which is directly underloaded and can accept additional volume in this 

amount, and finally perform the transfer.  

As a rule, this process is not so simple. For large-scale problems, DLB can be 

problematic (multi-stage computations and interleaved computations with inherent 

communication barriers) [108]. Even with static allocation, load imbalances can 

occur during computation, such as in the direct hybrid method. Estimating various 

computational costs for the initial domain decomposition is the main parameter for 

estimating the efficiency of computation in the absence of load balancing. Forgetting 

to take into account the waiting time and boundary conditions, one can be mistaken 

when predicting the expected load. As a rule, it is calculated by comparing the 

measured time from independent models. These parameters display and explain the 

difference between predicted and actual load [109].  

Moreover, the performance situation can deteriorate when considering a 

heterogeneous system or a large-scale simulation with relatively small field 

workloads [110]. Thus, as a way out of this situation, one can imagine DLB, 

automatic distribution of balance in real time simulation. Moreover, the simulation 

environment can be extended using DLB and hybrid parallelization. Since there are 

many exceptions when using the direct hybrid method, such as changing the size of 

the grid when an unassigned task changes, redistributing calculation cells. By 

calculating new computational weights in all subdomains on the data obtained from 

the parallel process time count and cell allocation, DLB determines new domain 

divisions.  
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5.9 Estimating Computational Weights 

 

Giving an estimate of the computational costs of various objects in the 

simulation, it is possible to achieve the correct distribution of the load and its 

balancing for related tasks [102]. The standard method is considered to be a uniform 

distribution of tasks in each parallel subdomain. For all that, it is assumed that the 

environment is homogeneous with one method and the computational cost is constant 

and unchanged for each object. That is, if deal with different computational costs. 

One way to avoid this problem is to define precomputed weights for each type of 

problem. Again, there may be exceptions in the form of a failure in decomposition 

due to the lack of some algorithmic parts or the heterogeneity of processors. One way 

to solve this situation is to know the real time for each object [110]. But given the 

likelihood of using different tools and significant efforts, the above method is not 

suitable for scientific applications. It can be said about the need for a minimally 

intrusive and reliable method of estimating computational weights to apply the 

correct load distribution.  

A feature of the DLB algorithm in this work is the estimation of weights due to 

time measurements in each parallel subdomain. And under different types of load, 

different methods can be taken into account. The time measured for each step in the 

simulation adds up to the total computation time. To take into account external 

factors in each subdomain i, its average value ri was determined, truncated by 25% 

[106, 111]. With N parallel processes, the following is the global average 

computation time:  
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where li - the local computational load and could be expressed as: 
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Later, solving the problem using the least squares method , you can 

calculate the calculated weights. As is known, in the least squares method where the 

right side is determined by the load vector l, while the left matrix A represents the 

current load distribution among all subdomains. From this it can be summarized that 

the average workload can be represented by a linear combination of the individual 

workload contributions.  
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The DGELSD procedure in LAPACK [112] given in formula (24) was used in this 

work. Moreover, formula (25) gives an example of this procedure with two types of 
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load for N=4 parallel subdomains. A difference of 2.61 was obtained by comparing 

the two types of loads under an overdetermined system of linear equations using the 

least squares method. From which it follows that the average calculation time for the 

first type of objects is 2.6 times lower than for the second type.  
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5.10 Split approach 

 

To put it simply, computations with domain decomposition on the basis of the 

simulation leads to obtaining results from the assigned CCP task. Essentially, 

dynamic load balancing calculates new weights for different task types to define them 

as inputs. In this case, all actions occur during simulation in a one-dimensional 

decomposition of the application area. However, this does not guarantee a positive 

performance impact, as it is difficult to track local changes in the workload. 

Therefore, one can consider a more rigid withdrawal of the imbalance. This is 

necessary to assign new domain offsets for splitting to the simulation base. Naturally, 

at the initial stage, it is advisable to use the above method in order to guarantee a 

good start for the next steps. Further, on the basis of the received data, such as the 

percentage of imbalance and weights, individual offsets are automatically 

determined. The cumulative load imbalance can be represented by the formula below 

as a starting point:  
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Every meaning quantifies the total area load imbalance on both sides (left and right) 

of the split point. Then it is necessary to make a shift oj during the simulation to 

reduce the cumulative imbalance. Thus, a general load imbalance emerges as a 

consequence of determining each offset separately. If to consider large-scale 

problems [113], based on CFD separation, the above method can be taken as an 

incremental DLB method based on diffusion [108]. According to formula (26), one 

can obtain the total imbalance sj, having li as the computational load for each parallel 

subdomain. As a result, the imbalance difference on both sides (left and right) of each 

position is quantified. What shows with the value s2=0.45 in the example, the other 

two processors have a computational load significantly lower than the first two. It 

follows from this that the load must be shifted to the left from overloaded processors 

to underloaded ones. As you can see, in this way, the global imbalance is minimized 
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as a result of reducing the shifting local domain's offset.  

 

)( jj ssignd            (27) 

 

For cell wk of section k in domain i, the load distribution can be represented as 

follows: 
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this can be represented as li load layout about the cells of the local section. 

Equalizing the total imbalance sj by the crossed shares of the load on the partition 

cells  
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the required displacement of each offset oj can be estimated from k, which is the 

index of the sequence. For this index, the statement ≈ 0 is also true. Take 

fpenalty≥1 as an additional penalty factor to avoid outliers and limit biases. This 

method is shown using Equation (22) for the offset o2 of the second region at 

fpenalty=1.25. According to formula (28), s2=0.45, taken as the initial cumulative 

imbalance, is minimized due to a shift to a new domain by shifting by two separating 

cells.  
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Moreover, taking into account the performance indicators that evaluate 

processing speed on different computing nodes, this method can be scaled to special 

calculations on different computing equipment. By comparing the local load with the 

reciprocal of the relative domain workload, the relative processing performance can 

be obtained. In order to quantify the relative computational speeds [114], the power 

weight has the following form:  
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The transfer of excess load to faster processors from slower ones and vice versa 

can be done by using an additional value in the iterative process as the corresponding 

computing power, according to formula (28). For instance, having an upper bound on 
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processing power as pi-1=0.8 and a lower bound as pi=1.2, the workload 

redistributed from fast to slow processors is weighted as pi/pi-1=1.5. As a result, it 

can be seen that this method is suitable for both types of loads (static and dynamic). 

In the dynamic case, keep in mind that frequent reallocation should have a positive 

effect on performance.  

That is, it is necessary to catch a certain balance between these processes. In this 

work, the DLB algorithm is used in serial format, which in each domain collects data 

from cell workloads. The hierarchical parallel version can be extended to minimize 

communication costs and memory requirements. However, in the case where only 

one value per calculation cell is considered, the size of the section is quite small in 

comparison, for instance with a huge amount of loading information [115, 116].  

 

5.11 Parallel performance analysis 

 

Figure 57 shows the results of the load obtained from the problem of air 

transport in the human respiratory system. From 28 to 84 cores were used to obtain 

data. The results are compared with and without balancing applications. The time 

spent on calculations and communication between all parallel subdomains was taken 

into account to calculate the average time spent on modeling a step. A more uniform 

distribution between parallel subdomains can be observed in the overall 

computational load under the condition of using DLB. With CFD, more ranks are 

captured. Moreover, there is a decrease in the imbalance of I from 1% to 9%. 

Whereas the usage was at 22%. Based on this indicator, even more significant 

savings can be achieved by an ideal balance. And also improve the initial partition. 

But due to some complex modeling complexities, such as tasks with different 

workloads, can be a hindrance.  

A significant advantage of the DLB scheme is the possibility of its 

implementation, regardless of the problem statement (with minimal information). In 

Figure 57, you can see the above distribution of the share of execution time, with 

different computing cores. However, for cores with significant computational 

dominance, the computational simulation load was overestimated, while for domains 

with a higher proportion, it was underestimated. It can be concluded that, under the 

condition of exact computational weights, the decomposition of the domain as a 

result cannot be ideally optimal. This is due to differences in load compositions with 

different computation times. Which gives an improvement in productivity with time 

savings. The required total resources for one simulation time step under the condition 

of strong scaling (from 28-84 cores) with and without load balancing are shown in 

Figure 58. Moreover, the average downtime for each configuration is shown. With a 

small number of computing cores, there is a slight imbalance. This fact can be 

explained by the low degree of parallelism, in which a very large load falls on each 

processor, with inaccurate computational weights. This is what keeps the imbalance 

in check. Further, you can notice improvements in the overall performance of 

parallelization when using DLB. At 28 cores, the standard simulation imbalance 

starts at I%=9.6% and grows to I%=31% at 84 cores. By reducing local tasks, a 20% 
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increase in the total amount of computing resources can be achieved. And with DLB, 

the imbalance is I%=4.6% for 28 cores and I%=22% for 84 cores. 

It can be said that the degree of parallelism and the potential of DLB are directly 

proportional. That is, it is possible to further improve the dynamic load distribution. 

With a large number of cores, the worst performance of the standard simulation of 

calculated weights is observed. For low degrees of parallelism, the weighted design 

factor is close to the calculated prior that is being used, or the initial partition.  

There is a decrease in this ratio with a large number of cores. This is due to the 

decrease in solver efficiency when simulating in each parallel subdomain of the 

problem with a smaller size, based on the calculations of observations of time per cell 

and time step. This ratio of weights, due to its inconsistency, leads to a deterioration 

in the percentage of imbalance. Moreover, on the Figures 58a and 58b imbalances are 

presented in the ratio time to the nodes. These diagrams also reinforce the above 

results. 

 

 
Figure 57 - Distribution of the share of execution time with different computing 

cores. 

 

 
Figure 58 - Imbalances percentage in the ratio time to the nodes. 

 

Furthermore, the research was done in order to find out the impact of the 

number of OpenMPI cores to the execution time. Let us consider Figure 59b time for 

24 cores. Couple OpenMPI cores do not make any scene from the point of dynamic 

load balancing. Indicators of time worsened a little on three OpenMPI nodes. 
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Nevertheless, after 4 nodes time returned to the initial value. But the critical point 

was 6 OpenMPI cores, as the line gradually went up. Next Figure 59c for 28 cores 

showed stable time until 7 OpenMPI cores. After which the time increased 

dramatically. Research for 40 cores first showed subtle changes in time under 7 

OpenMPI cores, but then leap in time value was from 50 to more than 300 while 

increasing ten nodes with OpenMPI. Uniform increase in temporal parameters was 

observed 48, 56 and 80 cores. 

 

 
a) for 24 cores 

 
b) for 28 cores 
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c) 40 cores 

 
d) for 48 cores 

 
e) for 56 cores 
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f) for 80 cores 

Figure 59 - Distribution of the execution time with different cores. 

 

5.12 Conclusion 

 

In fact, it is very difficult to achieve high efficiency for large-scale parallelized 

tasks. Since even the slightest imbalance can lead to dramatic results in the picture of 

overall performance. DLB, in turn, makes it possible to increase efficiency in 

complex modeling with non-trivial domain decomposition. This possibility is 

provided by the Hilbert Space Filling Curve (HFC) at a coarse level. Since it is 

necessary to take into account various numerical methods, as well as various 

computational costs. This scheme automatically appropriate weights to estimate the 

overall workload distribution. Due to the inability of this assessment procedure catch 

local changes in workload, a general approach to load balancing SFC based may not 

be optimal. Therefore, the incremental diffusion DLB algorithm based on SFC 

separation, which allows customize domain decomposition. Modeling air movement 

in the nasal cavity demonstrates efficiency DLB schematics for various large-scale 

related tasks. Detailed analysis performance showed the need for the DLB method for 

direct determination of load imbalances, which, for example, are caused by individual 

computational efficiency depending on the composition of the local workload, and 

scalability of individual program codes. Also, an experiment with a strong scaling has 

shown an improvement in performance with increasing degree parallelism when a 

priori estimated computational weights are used for initial partition. Thus, studies of 

the nasal cavity made it clear that their walls contribute to the heating of the air and 

the occurrence of vortices. What is important in the transition of incoming air to the 

alveolar state, before entering the nasopharynx. Moreover, the importance of 

humidity must be taken into account. Since there is a need for heating at low ambient 

temperatures. Due to the increase in the number of people with nose problems, the 

relevance of this topic is increasing every year. To solve this problem, a surgical 

method can be proposed that provides optimal control for the normal functioning of 

the nose. 
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CONCLUSION 

 

The paper developed a dynamic load balancing (DLB) scheme to improve the 

performance efficiency of massively parallel computing. So this method with 

different numerical methods and different computational costs per divided cell is 

obtained using the Hilbert space filling curve (SFC) at a rough level. In order to give 

a complete assessment, this scheme was applied for various tasks, such as flows 

behind a backward-facing step and air flows in a complex nasal region. 

Comparison of the obtained simulation results with numerical data and 

experimental data of other authors was carried out, and to evaluate the parallel 

numerical algorithm, a comparison of the parallel algorithm, hybrid parallel 

algorithm and an algorithm using a dynamic load balancing (DLB) scheme was 

carried out. 

Brief conclusions based on the results of dissertation research. 

 a numerical study of the efficiency of high-performance computing for 

flow problems behind a backward-facing step has been carried out 

 a numerical study of the efficiency of high-performance computing when 

using hybrid parallel algorithms for problems of air flow in a complex nasal region 

was carried out 

 a hybrid parallel numerical computation was carried out using various 

methods of domain decomposition 

 a hybrid parallel numerical computation was carried out using the 

dynamic load balancing method 

 an estimate is given of the efficiency of hybrid parallel numerical 

computation using various methods of domain decomposition 

 an estimate of the efficiency of the hybrid parallel numerical algorithm 

using the dynamic load balancing method is given 

 Comparison of the obtained simulation results with numerical data and 

experimental data of other authors was carried out. 

 the analysis of the obtained results of hybrid parallel numerical 

computation and hybrid parallel numerical computation was carried out using the 

method of dynamic load balancing 

It should be noted that the results obtained gave rise to new problems. Since the 

dynamic load balancing (DLB) scheme does not require any modification, in the 

future it will be possible to apply this approach to simulate various three-dimensional 

physical and technical problems. In the future, it is planned to consider these tasks. 

The results obtained can be used to solve a number of applied problems. 

For numerical calculations, adequate numerical methods and algorithms are used 

in the work, and the results obtained are compared with the calculated and 

experimental data of other authors. Thus, the results of this work can find wide 

application in the field of distributed computing and information technology. 

Evaluation of the completeness of the solution of the assigned tasks. In the 

work, a dynamic load balancing (DLB) scheme has been built, which allows to 

increase the efficiency of the complex, on the basis of which mathematical modeling 
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was performed, and the numerical calculation of three-dimensional various physical 

and technical problems, this allows us to conclude that the goal of the work has been 

achieved and the research tasks have been completely solved. 

Development of recommendations and baseline data for the specific use of 

the results. The results obtained in this work are recommended to be used for the 

implementation of projects related to solving problems in the field of distributed 

computing and information technology. 

Assessment of the scientific level of the work performed in comparison with 

the best achievements in the field. The thesis contains new science-based results 

that solve an important scientific problem, namely, the problem of high performance 

computing for various problems using a dynamic load balancing (DLB) scheme. 
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